Abstract:
Disclosed is a cascode configuration that moves the gate of the cascode substantially without delay relative to an output node by capacitively coupling the latter onto the cascode gates. The passive coupling eliminates the need for actively driving the gates of the cascode. In some embodiments, the only circuitry needed on the cascode gate may be a biasing circuit that limits the swing on the cascode gate between V max and 2V max , where V max is a transistor device rating.
Abstract:
Reliability of a buck power stage may be enhanced by extending the maximum input voltage able to be withstood in the disabled (non-switching) state. During device qualification/testing, a power management unit (PMU) in the disabled state may have its input node subjected to greater than a maximum input voltage permitted for reliability (Vmax). Under such conditions, a force voltage (Vforce) may be selectively applied to the PMU switching node in the disabled state. For a given input voltage (VIN), this reduces voltage across the non-switching transistors of the power stage (and hence the resulting stress) to below Vmax. In certain embodiments, the Vforce applied to the switching node is of a fixed magnitude. In other embodiments, the Vforce applied to the switching node is of a magnitude varying with input voltage. Embodiments may be particularly suited to implement power management for a System-On-Chip (SoC).
Abstract:
A low standby power DC-DC converter can be powered down during standby mode. The DC-DC converter can be periodically awakened between sleep cycles to check if the output voltage needs to be recharged (refreshed). The duration of the sleep cycles can be varied to accommodate for changing load conditions that would affect the output voltage.
Abstract:
Techniques and systems are provided for processing image data using one or more neural networks. For example, a patch of raw image data can be obtained. The patch can include a subset of pixels of a frame of raw image data, and the frame can be captured using one or more image sensors. The patch of raw image data includes a single color component for each pixel of the subset of pixels. At least one neural network can be applied to the patch of raw image data to determine a plurality of color component values for one or more pixels of the subset of pixels. A patch of output image data can then be generated based on application of the at least one neural network to the patch of raw image data. The patch of output image data includes a subset of pixels of a frame of output image data, and also includes the plurality of color component values for one or more pixels of the subset of pixels of the frame of output image data. Application of the at least one neural network causes the patch of output image data to include fewer pixels than the patch of raw image data. Multiple patches from the frame can be processed by the at least one neural network in order to generate a final output image. In some cases, the patches from the frame can be overlapping so that the final output image contains a complete picture.