Abstract:
Various embodiments include methods and devices for processing a neural network by an artificial intelligence (AI) processor. Embodiments may include receiving an AI processor operating condition information, dynamically adjusting an AI quantization level for a segment of a neural network in response to the operating condition information, and processing the segment of the neural network quantization using the adjusted AI quantization level.
Abstract:
Parallelization of scalar operations by vector processors using data-indexed accumulators in vector register files, related circuits, methods, and computer-readable media are disclosed. In one aspect, a vector processor comprises a vector register file providing a plurality of write ports and a plurality of vector registers each providing a plurality of accumulators. The vector processor receives an input data vector. For each of the plurality of write ports, the vector processor executes vector operation(s) for accessing an input data value of the input data vector, and determining, based on the input data value, a register index for a vector register among the plurality of vector registers, and an accumulator index for an accumulator among the plurality of accumulators of the vector register. Based on the register index, a register value is retrieved from the register index, and a scalar operation is performed based on the register value and the accumulator index.
Abstract:
A clock gating system (CGS) includes a digital power estimator configured to generate indications of a predicted energy consumption per cycle of a clock signal and a maximum energy consumption per cycle of the clock signal. The CGS further includes a voltage-clock gate (VCG) circuit coupled to the digital power estimator. The VCG circuit is configured to gate and un-gate the clock signal based on the indications prior to occurrence of a voltage droop event and using hardware voltage model circuitry of the VCG circuit. The VCG circuit is further configured to gate the clock signal based on an undershoot phase associated with the voltage droop event and to un-gate the clock signal based on an overshoot phase associated with the voltage droop event.