Abstract:
Methods and apparatuses for drying electronic devices are disclosed. Embodiments include methods and apparatuses that heat and decrease pressure within the electronic device. Some embodiments increase and decrease pressure while adding heat. Other embodiments include a desiccator for removing moisture from the air being evacuated from the electronic device prior to the air reaching an evacuation pump. Further embodiments detect humidity within the low-pressure chamber and determine when to increase and/or decrease pressure based on the humidity. Still further embodiments determine that the device is sufficiently dry to restore proper function based on the detected humidity, and in some embodiments based on the changes in humidity while pressure is being increased and/or decreased. Still further alternate embodiments automatically control some or all aspects of the drying of the electronic device. Additional embodiment disinfect the electronic device.
Abstract:
Methods and apparatuses for detecting moisture are disclosed. Embodiments detect the existence and/or level of moisture in electronic devices, such as by using one or more moisture sensors that removably connect to a pre-existing port in the electronic device (such as a headphone jack or similar port). Some embodiments detect a component of the ambient air (such as moisture level) to improve the accuracy of the moisture detector. Some embodiments decrease pressure at the port using a pneumatic pump and move gas from the electronic device into the moisture detector. Some embodiments detect the movement of air in the vicinity of at least one moisture sensor (such as by measuring pressure) and use this information to improve the accuracy of the moisture detector. Some embodiments display information related to the moisture in the electronic device and/or the ambient air.
Abstract:
Methods and apparatuses for detecting when an electronic device has been exposed to moisture that could damage the electronic device, and inhibiting the flow of electrical power to the electronic device when the moisture level is too high are disclosed. Embodiments sample air within the electronic device, measure the moisture in the sampled air, inhibit the connection of electrical power to the electronic device if the moisture exceeds a threshold, and permit the connection of electrical power to the electronic device if the moisture level is below a threshold. Some embodiments measure the moisture in the ambient air to improve effectiveness. Other embodiments allow resetting of a tripped condition. Other embodiments include constant sampling of air from within the electronic device to assist drying, and inhibiting application of power to the electronic device until the electronic device is sufficiently dry. Still other embodiments interrupt power from the electronic device's battery.