Abstract:
This invention relates generally to a thermoplastic compositions and, more particularly, to compositions comprising a polymer matrix and comprising a filler composition. To that end, according to the embodiments of the invention, a thermoplastic composition is disclosed that generally comprises a polymer matrix and at least one filler composition. The polymer matrix generally comprises at least one polycarbonate or polyamide. The filler composition generally comprises at least one laser direct structuring additive with a mean particle size of less than 1 µm and may additionally optionally comprise flame retardants, stabilizers and process aids.
Abstract:
The present disclosure relates to polymer compositions. The disclosed compositions comprise a thermoplastic polymer, a laser direct structuring additive, and a reinforcing filler. Also disclosed are methods for making the disclosed polymer composition and articles of manufacture comprising the disclosed polymer composition.
Abstract:
The present disclosure relates to a polymer composition. The disclosed composition comprises a polycarbonate polymer, a laser direct structuring additive capable of being activated by electromagnetic radiation and thereby forming elemental metal nuclei, reinforcing filler, and a laser direct structuring synergist. Also disclosed is a method for making the disclosed polymer composition and an article of manufacture comprising the disclosed polymer composition.
Abstract:
Disclosed herein is a flame retardant composition comprising a polycarbonate; 5 to 10 weight percent of a polysiloxane-polycarbonate copolymer; where the polysiloxane- polycarbonate copolymer comprises an amount of greater than 10 weigh percent of the polysiloxane and where the molecular weight of the polysiloxane-polycarbonate copolymer is greater than or equal to 25,000 grams per mole; 5 to 20 weight percent of a branched polycarbonate; 5 to 60 weight percent of a reinforcing filler; and 1 to 15 weight percent of a phosphazene compound. Disclosed herein too is a method comprising blending a polycarbonate; 5 to 10 weight percent of a polysiloxane-polycarbonate copolymer; 5 to 20 weight percent of a branched polycarbonate; 5 to 60 weight percent of a reinforcing filler; where the reinforcing filler is a glass fiber, a carbon fiber, a metal fiber, or a combination comprising at least one of the foregoing reinforcing fillers; and 1 to 15 weight percent of a phosphazene compound; and extruding the flame retardant composition.
Abstract:
Disclosed herein is a flame retardant polycarbonate composition comprising 10 to 90 weight percent of a polycarbonate composition, a fibrous reinforcing and a flame retardant composition that comprises a phosphazene compound and a mineral filler synergist. In one embodiment, the polycarbonate composition comprises a first copolyestercarbonate copolymer and a second copolyestercarbonate copolymer, where the first copolyestercarbonate copolymer has a lower molecular weight than the second copolyestercarbonate copolymer. In another embodiment, the polycarbonate composition comprises a linear polycarbonate, a branched polycarbonate, or a combination of a linear and a branched polycarbonate. Disclosed herein too is a method of manufacturing the composition and articles that can be manufactured from the composition.