Abstract:
In one embodiment, there is provided a computer-implemented method for evaluating ceiling plenum airflow patterns and cooling performance of equipment in a data center. The method includes receiving data related to equipment in the data center, receiving data related to the ceiling plenum, determining first parameters related to airflow and to pressure in the ceiling plenum using a first airflow model, determining second parameters related to airflow through a plurality of equipment racks and to pressure across the plurality of equipment racks using a second airflow model distinct from the first airflow model, determining a coupling relationship between airflow through the equipment racks and airflow into the ceiling plenum, adjusting the first parameters based on at least the second parameters and the coupling relationship, determining a sufficiency of airflow through the equipment racks, and storing, on a storage device, an indication of the sufficiency of airflow through the equipment racks.
Abstract:
According to various aspects and embodiments, a system and method for use with a raised floor data center is provided. The method according to one aspect includes receiving input data, including data related to at least one data center design parameter, determining tile airflow uniformity using the input data and at least one empirical correlation, implementing an analytical model to determine airflow distribution, the analytical model including at least one empirical formula, and using the tile airflow uniformity and the airflow distribution to evaluate airflow in a data center design.
Abstract:
A system and method for modeling airflow and temperature are disclosed. In one example, the method includes receiving input data related to a physical layout of a facility, dividing, by a computer, a representation of the facility into a plurality of grid cells, identifying where effects of at least one of jet airflow, thermal plumes and buoyancy forces are present in the facility based on the physical layout, specifying a velocity value, using a velocity correction method, for a first set of the plurality of grid cells if the effects of at least one of jet airflow and thermal plumes are present within the first set of the plurality of grid cells, calculating, by the computer, an airflow velocity value for each of a second set of the plurality of grid cells, the second set being different from the first set, modifying the determined airflow velocity value for any of the second set of the plurality of grid cells where the effects of buoyancy forces are present, and storing, on a storage device, the modified airflow values.
Abstract:
A computer-implemented method for sequential placement of cooling resources in a data center comprises: defining a weighted, higher- order cooling metric, representing an overall performance of the cooling resources in the data center; enumerating all possible locations in the data center for placing an additional cooling resources; and placing the cooling resources in locations in the data center for which is closest to an optimum value.