Abstract:
A method and system for exchanging data between one or more RFID readers and one or more non-tag devices in an RFID system using RFID air interface protocol. An RFID system includes one or more non-tag devices in data communication with one or more RFID readers over an interrogation zone. Non-tag devices utilize RFID air interface protocol to transmit and receive wireless data signals to and from the RFID readers, obviating the need to implement a separate communication infrastructure. The RFID readers may forward the data to an RFID backscatter enabled host computer for processing the received signals. Non-tag devices acting as readpoints communicate with other non-tag devices to establish a parent/child readpoint hierarchy. One or more multiplexers may facilitate the data exchange between RFID readers and the non-tag devices in order to provide an even more robust communication network.
Abstract:
Disclosed are a system and method to detect RFID tags in electronic article surveillance systems using frequency mixing. The system includes an RFID module that includes an energy coupler to receive transmitted energy that includes a first signal at a first frequency and a second signal at a second frequency, and a mixing element to mix the first and second signals, to generate a third signal at a third frequency, and the energ coupler to transmit the third signal to an EAS detection system. Other embodiments are described and claimed.
Abstract:
An integrated electronic article surveillance (EAS) and radiofrequency identification (RFID) marker is provided which a semiconductor device which may be coupled to an antenna for receiving and retransmitting energy and signals to the antenna. A current receiving front end section of the semiconductor device communicates with at least one other section of the device so more than one function can be implemented upon receiving and retransmitting energy and signals. A first switch is operatively coupled to the front end section such that the functions are entirely but reversibly disabled upon closure of the first switch thereby effecting a reversible EAS function. A second switch is operatively coupled to the front end section such that at least one of the functions is at least partially disabled upon closure of the second switch. RFID functions of the marker are retained upon EAS deactivation.
Abstract:
A security tag comprising: a substrate having a surface; a lead frame to mount on said surface, said lead frame having a first side and a second side, said lead frame to connect to said antenna; an integrated circuit to connect to said lead frame; an antenna disposed on said surface, said antenna to comprise a first antenna portion and a second antenna portion, said first antenna portion to connect to said first side and said second antenna portion to connect said second side, wherein said antenna is tuned to an operating frequency by modifying a first length for said second antenna portion after said antenna portions are disposed on said surface; and wherein each portion has a first antenna end and a second antenna end, said first antenna end to connect to said lead frame, said first antenna portion to form an inwardly spiral pattern from said integrated circuit in a first direction, and said second antenna portion to form an inwardly spiral pattern from said integrated circuit in a second direction.
Abstract:
A method, device and system for radio frequency identification ("RFID") performance analysis. An analyzer for analyzing the performance of an RFID reader is provided. The analyzer has an interface in communication with the reader. A processor is in communication with the interface. The processor operates to use the interface to monitor communication with the reader and/or simulate one or more RFID tags. A method, device and system for radio frequency identification ("RFID") performance analysis. An analyzer for analyzing the performance of an RFID reader is provided. The analyzer has an interface in communication with the reader. A processor is in communication with the interface. The processor operates to use the interface to monitor communication with the reader and/or simulate one or more RFID tags.
Abstract:
A radiofrequency identification (RFID) multiplexer, which may be in a network, interprets an RF signal from an RFED reader as RFE) tag interrogation data. A single cable directs an RF signal from the RFID reader and RF control signals and/or RF power through the multiplexer. An RF sampler may be coupled to the cable; and an RF detector detects the RF signal from the cable via the RF sampler. A data decoder decodes and interprets the RF signal as the RFID tag interrogation data and forwards the RFID tag interrogation data to a control logic circuit as a MUX channel-change command. The logic circuit and decoder may be combined in a microcontroller, and an RF backscatter modulator coupled to the cable enables reverse communication with the RFID reader to determine whether another RFID multiplexer is coupled to the RFID multiplexer.
Abstract:
A method and an analogous system for tuning an RFID label prior to application to an article are disclosed. The method includes providing an RFID label having at least one antenna disposed therein, identifying an article, relaying information related to the identification of the article to a controller, with the controller including a memory of predetermined tuning parameters for the article, retrieving from memory one or more of the tuning parameters for the article; and adjusting the tuning parameters of the RFID label to correspond to the article by altering a geometric parameter of the antenna of the RFID label. The system includes a cutting device to alter a geometric parameter to correspond to the article by removing material from at least one antenna forming part of the RFID label.
Abstract:
A reader device for electronic article surveillance (EAS) is disclosed which includes an exciter; a transmitter, the transmitter operatively coupled to the exciter via a first signal gate; a transmitter antenna operatively coupled to the transmitter; a receiver antenna operatively coupled to a receiver front end; and a signal detector, the receiver front end operatively coupled to the signal detector via a second signal gate, wherein the exciter generates a burst of electromagnetic energy in a pulse or a continuous wave at an operating frequency of a radiofrequency identification (RFID) tag within a read range of the EAS reader such that the energy level of the burst generates a residual or ring-down signal from the RFID tag indicating the presence of the RFID tag without activating the RED functions of the tag. The ring-down signal is read by the EAS reader as an EAS function.
Abstract:
An RFID detection system for determining the location of tagged items within an interrogation zone. The system includes one or more printed circuit boards coupled to each other and placed within a region of the interrogation zone. Each printed circuit board contains an antenna array having one or more antennas where each antenna detects the presence of one or more tagged items within a specific read zone in the region. The printed circuit board also contains a multiplexer coupled to the antenna array, where the antenna array and the multiplexer are provided on a substrate. Upon an interrogation request from an RFID reader, a specific antenna can be activated and selected by the multiplexer and tagged items within the antenna's read zone are interrogated. RF signals containing RF identification information are then transmitted back to the RFID reader where a host computer interprets the signals and determines the location of the identified tagged items.
Abstract:
A radio frequency identification (RFID) system for item level inventory may be provided. The RFID system may include an RFID interrogator, at least one interrogator antenna and at least one local antenna configured to communicate with RFID tags. The RFID system further may include a multiplexer connected to the at least one local antenna and configured to receive power from an RF signal generated by the RFID interrogator and transmitted wirelessly from the interrogator antenna.