Abstract:
An improved combustion section for a gas turbine engine is disclosed. A fuel nozzle includes new features which provide improved injection patterns of oil fuel and cooling water, resulting in better control of combustion gas temperature and NOx emissions, and eliminated impingement of cooling water on walls of the combustor. A new combustor includes a plate-fin design which provides improved cooling, while the combustor also makes more efficient use of available cooling air and has an improved component life. A new transition component has a smoother shape which reduces stagnation of combustion gas flow and impingement of combustion gas on transition component walls, improved materials and localized thickness increases for better durability, and improved cooling features for more efficient usage of cooling air.
Abstract:
A multi-fuel nozzle for a combustion turbine engine and method regarding such a multi-fuel nozzle are provided. The nozzle includes a support flange (12). A first fuel-injecting stage (14) defines a first conduit extending along a longitudinal axis of the nozzle. A second fuel-injecting stage (16) defines a second conduit coaxially disposed about the first fuel-injecting stage. The first and second fuel-injecting stages mutually share a flow-separating wall (18) between one another. A slip-fit joint (20) to mechanically couple the flow-separating wall to the support flange. The slip-fit joint is configured to accommodate thermally-induced axial movement of the flow-separating wall in the varying thermal environment of the combustion turbine engine
Abstract:
A nozzle cap (82) is disposed at a downstream end of the nozzle. The nozzle cap includes a bore arranged to accommodate a downstream portion of a fluid-injecting lance that extends along a longitudinal axis (18) of the nozzle. The downstream portion of the fluid-injecting lance includes a centrally-located atomizer (80) to form a first atomized ejection cone. An array of atomizers (84) is disposed in the nozzle cap. The array of atomizers is circumferentially disposed about the longitudinal axis of the lance. The array of atomizers may be positioned radially outwardly relative to the centrally-located atomizer to form an array of respective second atomized ejection cones.
Abstract:
A fuel burner system (10) configured to inject a liquid fuel and a gas fuel into a combustor (12) of a turbine engine (14) such that the engine (14) may operate on the combustion of both fuel sources (20, 24) is disclosed. The fuel burner system (10) may be formed from a nozzle cap (16) including one or more first fuel injection ports (18) in fluid communication with a first fuel source (20) of syngas and one or more second fuel injection ports (22) in fluid communication with a second fuel source (24) of natural gas. The fuel burner system (10) may also include an oil lance (26) with one or more oil injection passages (28) that is in fluid communication with at least one oil source (30) and is configured to emit oil into the combustor (12). The oil lance (26) may include one or more fluid injection passages (32) configured to emit air to break up the oil spray and water to cool the combustor (12), or both.
Abstract:
A fuel burner system (10) for a turbine engine (12) configured to operate with syngas fuel, whereby the fuel burner system (10) is configured to reduce nozzle and combustor basket temperatures is disclosed. The fuel burner system (10) may include a plurality of first and second fuel injection ports (16) positioned within a combustor (18), whereby the first fuel injection ports (14) are larger than the second fuel injection ports (16). One or more air injection ports (20) may be aligned with the first fuel injection ports (14). During operation, fuel injected into the combustor (18) from the first fuel injection ports (14) mixes better with the incoming air, causing reduced NOx emissions and lower flame temperatures. Also, the regions between adjacent air injection ports (20), which typically run the hottest, are cooler than conventional combustion system due, in part, to the smaller, second fuel injection ports (16) aligned with regions (22) between adjacent air injection ports (20).
Abstract:
A multi-functional fuel nozzle (10) for a combustion turbine engine is provided. An annular fuel-injecting lance (12) may include a first fluid circuit (14) and a second fluid circuit (16). One of the first and second fluid circuits during a liquid fuel operating mode of the combustion turbine engine may convey a liquid fuel. The other of the first and second fluid circuits may convey a selectable non-fuel fluid. An atomizer (30) is disposed at the downstream end of the lance. The atomizer may have a first ejection orifice (32) responsive to the first fluid circuit to form a first atomized ejection cone (34), and a second ejection orifice (36) responsive to the second fluid circuit to form a second atomized ejection cone (38). The first and second ejection cones (34, 38) formed with the atomizer may be concentric cones that intersect with one another over a predefined angular range.
Abstract:
A multi-functional fuel nozzle (10) for a combustion turbine engine is provided. A nozzle cap (50) may be disposed at a downstream end of the nozzle. A heat shield (60) is mounted onto the nozzle cap. A plurality of cooling channels (62) is arranged between a forward face of the nozzle cap and a corresponding back side of the heat shield. The plurality of cooling channels may be arranged to discharge cooling air over a forward face of an atomizer assembly in the multi-functional fuel nozzle.