Abstract:
An aircraft is provided including an airframe, an extending tail, and a counter rotating, coaxial main rotor assembly including an upper rotor assembly and a lower rotor assembly. A translational thrust system positioned at the extending tail, the translational thrust system providing translational thrust to the airframe. The main rotor assembly and the translational thrust system are configured to provide hover nose down, hover nose up and hover level modes of flight.
Abstract:
A differential pre-cone rotary wing arrangement includes a first rotor assembly having a first set of rotor blades rotatable about an axis, the first set of rotor blades having a first pre-cone angle, and a second rotor assembly having a second set of rotor blades rotatable about the axis, the second set of rotor blades having a second pre-cone angle, the second pre-cone angle is different than the first pre-cone angle.
Abstract:
An aircraft includes an airframe having an extending tail, a counter rotating, coaxial main rotor assembly disposed at the airframe including an upper rotor assembly and a lower rotor assembly and a translational thrust system positioned at the extending tail and providing translational thrust to the airframe. A flight control computer is configured to control a main rotor rotational speed of the upper and the lower rotor assemblies of the main rotor assembly as a function of airspeed of the aircraft. A method of operating an aircraft includes retrieving a threshold main rotor rotational speed of the dual coaxial main rotor assembly and calculating an actual main rotor rotational speed according to an environment of the aircraft. The actual main rotor rotational speed is maintained to remain at or below the threshold main rotor speed according to an airspeed of the aircraft.
Abstract:
An interactive aircraft load management system automates calculation and provides simulation capability to changes in an aircraft CG. limit for display on a three-dimensional aircraft symbology. The aircraft load management system also communicates with a fly by wire (FBW) flight control system wherein the aircraft's control system is programmed to automatically compensate for CG. excursions and to alter control laws. The aircraft load management system also selectively reels-in and reels out sling lines as the aircraft pitches and rolls to maintain a load vector from a slung load along the aircraft centerline. Load vector travel is accomplished by coupling a winch control system into the flight control system.
Abstract:
An aircraft includes an airframe; an extending tail; a counter rotating, coaxial main rotor assembly including an upper rotor assembly and a lower rotor assembly; and a translational thrust system positioned at the extending tail, the translational thrust system providing translational thrust to the airframe; wherein a ratio of (i) the hub separation between the hub of the upper rotor assembly and the hub of the lower rotor assembly to (ii) a radius of the upper rotor assembly is between about 0.1 and about 0.135.
Abstract:
A method of controlling a rotary wing aircraft includes accelerating the aircraft in a fore direction independently of cyclic control of the main rotor and pitch of the aircraft.