Abstract:
A method of controlling a rotary wing aircraft includes accelerating the aircraft in a fore direction independently of cyclic control of the main rotor and pitch of the aircraft.
Abstract:
An aircraft is provided including an airframe, an extending tail, and a counter rotating, coaxial main rotor assembly including an upper rotor assembly composed of a plurality of blades and a lower rotor assembly composed of a plurality of blades. A translational thrust system positioned at the extending tail, the translational thrust system providing translational thrust to the airframe. A flight control system to control the upper rotor assembly and the lower rotor assembly, wherein the flight control system is configured to control lift offset of the upper rotor assembly and the lower rotor assembly.
Abstract:
A pitch control system configured to vary a pitch angle of at least one of a plurality of propeller blades of a propeller system is provided including a switch movable between a neutral position and a plurality of non-neutral positions. Movement of the switch to a first non-neutral position generates a command to move the propeller blades in a first direction. Movement of the switch to a second non-neutral position generates a command to move the propeller blades in a second direction. Movement of the switch to a third non-neutral position generates a command to move the propeller blades to a zero thrust position.
Abstract:
An aircraft is provided including an airframe, an extending tail, and a counter rotating, coaxial main rotor assembly including an upper rotor assembly and a lower rotor assembly. A translational thrust system positioned at the extending tail, the translational thrust system providing translational thrust to the airframe. The main rotor assembly and the translational thrust system are configured to provide hover nose down, hover nose up and hover level modes of flight.