Abstract:
An actuator and door latch system incorporating the same. The actuator moves a door latch between locked and unlocked positions with rapidity using a gear train directly coupled to an actuator motor or energy stored in an energy storage element such as a spring.
Abstract:
A steering shaft lock actuator including at least one motor having an output shaft; a drive train coupled to the output shaft, a locking pawl coupled to the drive train; and a housing for at least partially enclosing the motor, the drive train, the locking pawl and the locking pin. The drive train may be configured to linearly urge the locking pawl and a locking pin between a locked position wherein the locking pawl and the locking pin extend at least partially out of the housing and unlocked position wherein the locking pawl and the locking pin are retracted toward the housing relative to the locked position. The locking pawl may be positioned to prevent rotational movement of the steering shaft when in the locked position. The locking pin may be positioned to lock the actuator to a steering shaft interface when in the locked position.
Abstract:
An electro-mechanical actuator is provided resisting back driving of a gear train in at least one direction. The actuator includes an internal gear train (101). A clutch (111) is coupled to an output of the gear train and transmits a driving force from the gear train to a clutch output. When a back driving force is applied to the clutch output in at least one direction, the clutch assumes a locked configuration. When the clutch is in a locked configuration the clutch resists rotational movement of the output and back driving of the gear train.