Abstract:
An article of manufacture includes a cemented carbide piece7 and a joining phase that binds the cemented carbide piece into the article. The joining phase includes inorganic particles and a matrix material. The matrix material is a metal and a metallic alloy. The melting temperature of the inorganic particles is higher than the melting temperature of the matrix material. A method includes infiltrating the space between the inorganic particles and the cemented carbide piece with a molten metal or metal alloy followed by solidification of the metal or metal alloy to form an article of manufacture.
Abstract:
A macroscopic composite sintered powder metal article including a first region including cemented hard particles, for example, cemented carbide. The article includes a second region including one of a metal and a metallic alloy selected from the group consisting of a steel, nickel, a nickel alloy, titanium, a titanium alloy, molybdenum, a molybdenum alloy, cobalt, a cobalt alloy, tungsten, and a tungsten alloy. The first region is metallurgically bonded to the second region, and the second region has a thickness of greater than 100 microns. A method of making a macroscopic composite sintered powder metal article is also disclosed, herein. The method includes co-press and sintering a first metal powder including hard particles and a powder binder and a second metal powder including the metal or metal alloy.
Abstract:
An article in the form of one of a plate, a sheet, a cylinder, and a portion of a cylinder, which is adapted for use as at least a portion of a wear resistant working surface of a roll is disclosed. The article includes a metal matrix composite comprising a plurality of inorganic particles dispersed in a matrix material. The matrix material includes at least one of a metal and a metal alloy, wherein the melting temperature of the inorganic particles is greater than the melting temperature of the matrix material. A plurality of hard elements are embedded in the metal matrix composite. The wear resistance of the metal matrix composite is less than the wear resistance of the hard elements, and the metal matrix composite preferentially wears away when the article is in use, thereby providing or preserving gaps between each of the plurality of hard elements at a working surface of the article.
Abstract:
Methods for forming a wear resistant layer metallurgically bonded to at least a portion of a surface of a metallic substrate may generally comprise positioning hard particles adjacent the surface of the metallic substrate, and infiltrating the hard particles with a metallic binder material to form a wear resistant layer metallurgically bonded to the surface. In certain embodiments of the method, the infiltration temperature may be 50C to 100C greater than a liquidus temperature of the metallic binder material. The wear resistant layer may be formed on, for example, an exterior surface and/or an interior surface of the metallic substrate. Related wear resistant layers and articles of manufacture are also described.