Abstract:
Methods and apparatus are disclosed for predistorting input data signals to a MIMO transmitter to compensate for distortions introduced by the MIMO transmitter. Distortions introduced to data signals by a MIMO transmitter include crosstalk between multiple transmit paths and non-linearities introduced by power amplifiers. In an exemplary predistorter, post-amplifier crosstalk is compensated for by a first matrix operation before distortions introduced by power amplifiers are predistorted by power amplifier predistorters. After the power amplifier predistorters, pre-amplifier crosstalk is compensated for by a second matrix operation.
Abstract:
A method and system for pre-distorting a dual band signal to compensate for distortion of a non-linear power amplifier in a radio transmitter are disclosed. In one embodiment, a first and second signal of the dual band signal are up-sampled at a sampling rate that is based at least in part on the bandwidth of at least one of the first and second signals and based at least in part on an intermediate frequency by which the first and second signal are tuned before pre-distortion of the tuned signals.
Abstract:
Systems and methods for providing digital predistortion to compensate for a non-linearity of a power amplifier in a dual-band transmitter are disclosed. In one embodiment, a first baseband signal is tuned to a first intermediate frequency to provide a first intermediate frequency signal. Likewise, a second baseband signal is tuned to a second intermediate frequency to provide a second intermediate frequency signal. The first and second intermediate frequency signals are combined to provide a combined intermediate frequency signal. The combined intermediate frequency signal is then predistorted to compensate for the non-linearity of the power amplifier in the transmitter to thereby provide a predistorted signal. In one embodiment, a separation between the first and second intermediate frequencies and/or a sampling rate for predistortion is minimized based on a target intermodulation order for the predistortion.
Abstract:
In accordance with the present disclosure, there is provided a predistorter combined with a feedforward corrector that addresses power dissipation of the feedforward error path while maintaining a sufficiently simple digital predistortion model so as to further minimize power dissipation without sacrificing linearity.
Abstract:
A method and system for pre-distorting a dual band signal to compensate for distortion of a non-linear power amplifier in a radio transmitter are disclosed. In one embodiment, the first signal of the dual band signal is tuned to a first intermediate frequency to produce a first tuned signal and the second signal of the dual band signal is tuned to minus the intermediate frequency to produce a second tuned signal. A single input pre-distorter pre-distorts the sum of the first tuned signal and the second tuned signal. The coefficients of the pre-distorter are obtained from a one- dimensional look-up table.
Abstract:
Embodiments of a centralized predistortion system and corresponding adaptive predistortion processes are disclosed. In general, a central node includes one or more centralized predistortion components that enable predistortion for one or more remote transmit chains in order to compensate for non-linearity of power amplifiers in the one or more remote transmit chains. For instance, in one embodiment, the central node is a hub base station and the one or more remote transmit chains are included in one or more transmitters at one or more satellite base stations.
Abstract:
Systems and methods are disclosed for compensating for non-linearity of a power amplifier using space mapping based predistortion. In one embodiment, a transmitter includes a power amplifier that amplifies a power amplifier input signal, a predistorter that effects predistortion of the power amplifier input signal to compensate for a non-linear characteristic of the power amplifier using a space mapping based model of an inverse of the non-linear characteristic of the power amplifier, and an adaptation sub-system that adaptively configures the space mapping based model of the non-linear characteristic of the power amplifier. In one embodiment, the adaptation sub-system adaptively configures a space mapping based model of the non-linear characteristic of the power amplifier and adaptively configures the space mapping based model of the inverse of the non-linear characteristic of the power amplifier based on the space mapping based model of the non-linear characteristic of the power amplifier.
Abstract:
Systems and methods for compensating for non-linearity of a non-linear subsystem using predistortion are disclosed. In one embodiment, a system includes a non-linear subsystem and a predistorter configured to effect predistortion of an input signal of the non-linear subsystem such that the predistortion compensates for a non-linear characteristic of the non-linear subsystem. In addition, the system includes a narrowband filter that filters a feedback signal that is representative of an output signal of the non-linear subsystem to provide a filtered feedback signal, and an adaptor that adaptively configures the predistorter based on the filtered feedback signal and a reference signal that is representative of an input signal of the non-linear subsystem. By utilizing the filtered feedback signal, rather than the feedback signal, a complexity, and therefore, cost of the adaptor is substantially reduced.
Abstract:
The present disclosure generally relates to predistortion that compensates for non-linearity of a power amplifier as well as short-term and long-term memory effects of the power amplifier. In one embodiment, a transmitter includes a power amplifier that amplifies a power amplifier input signal to provide a power amplifier output signal, a predistortion sub-system that effects predistortion of the power amplifier input signal to compensate for non-linearity of the power amplifier and memory effects of the power amplifier, and a adaptation sub-system that adaptively configures the predistortion sub-system. The predistortion sub-system includes a memory-less predistortion component that compensates for the non- linearity of the power amplifier, a Finite Impulse Response (FIR) filter that compensates for short-term memory effects of the power amplifier, and an Infinite Impulse Response (IIR) filter that compensates for long-term memory effects of the power amplifier.
Abstract:
A method and system for providing a surface acoustic wave band reject filter are disclosed. According to one aspect, a surface acoustic wave band reject filter (34) includes a substrate (24) having electrode bars and bonding pads (36) formed on the substrate (24). The filter (34) further includes at least one die (26) having a side facing the substrate (24). A plurality of surface acoustic wave resonators (10) are formed on the at least one die (26) formed on the substrate (24). Solder balls (22) formed on a side of the at least one die (26) facing the substrate (24) are positioned to engage bonding pads on the substrate. The plurality of surface acoustic wave resonators (10) collectively exhibit a band reject filter response.