Abstract:
Use of adsorption, desorption, particle injection and other means to excite electrons to a region on their band structure diagram near an inflection point were the transient effective mass is elevated proportional to the inverse of curvature. These transient heavy electrons may then cause transmutations similar to transmutations catalyzed by the muons used by Alvarez at UC Berkeley during 1956 in liquid hydrogen. The heavy electrons may also control chemical reactions.
Abstract:
A binding reaction creates transient, elevated effective mass electron quasiparticles as surrogates for a heavier muon, to cause muon-catalyzed fusion transmutations with the surrogates and creates a composition of matter that enables neutralizing certain radioactive waste nuclei. Tailoring a junction of a device enhances the control of the surrogate's transient effective mass.
Abstract:
In some embodiments, energy is released by converting the bonding potential energy between two electropositive masses capable of forming a stable bond between them into the kinetic energy of an electron quasiparticle initially captured between them by the coulomb potential. The electron quasiparticles form transient bonds with delocalized ions and other reactants in or on a reaction particle where reaction rates and branches are controlled by the choice of electron quasiparticle effective mass. Methods and apparatus for stimulating and controlling such association reactions are shown and described. Thermionic and semiconductor methods and apparatus convert the electron quasiparticle energy directly into electricity. Other embodiments are disclosed.