Abstract:
A gas turbine engine component includes first and second walls spaced apart from one another to provide a cooling passage. First and second trip strips are respectively provided on the first and second walls and arranged to face one another. The first and second trip strips are arranged in an interleaved fashion with respect to one another in a direction.
Abstract:
A method for forming a cooling hole extending from an inlet on a first surface of a wall to an outlet on a second surface of the wall includes forming a diffusing section of the cooling hole, and a trailing edge on the outlet by electrical discharge machining, and forming longitudinal lobes in the diffusing section. The metering section extends from the inlet on a first surface of the wall towards the second surface of the wall. The diffusing section extends from the outlet to one end of a metering section located between the inlet and the outlet. The outlet is substantially linear or convex at the trailing edge and the lobes are separated by longitudinal ridges.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a platform having a non-gas path surface and a gas path surface, a cover plate positioned relative to the non-gas path surface and a cooling passage that extends between the cover plate and the non-gas path surface. At least one cooling entrance is formed through the cover plate and configured to bias the flow of a cooling fluid toward a prioritized location of the non-gas path surface.
Abstract:
A vane structure includes a baffle movably mounted within an aperture, the baffle movable to control a cooling flow between a first cooling cavity and a second cooling cavity.
Abstract:
A gas turbine engine component includes a structure having a cooling passage providing upstream and downstream portions separated from one another by an inner wall and fluidly connected by a bend. The downstream portion includes an outer wall opposite the inner wall to provide a downstream region extending between the inner and outer walls. A turbulence promoter extends from the outer wall adjacent to the bend in the downstream portion. The turbulence promoter is absent from a stagnation region adjoining the inner wall adjacent to the bend in the downstream portion
Abstract:
The present disclosure relates to cooling systems for turbine stators. A stator (200) may include a vane platform (210). A ducting plate (330) may be coupled to the vane platform. The ducting plate and the vane platform may form a cooling chamber (350) between the ducting plate and the vane platform. The ducting plate may include an inlet (340) adjacent to a leading edge (310) of the vane platform. The vane platform may include an outlet (360) adjacent to a trailing edge (320) of the vane platform. The ducting plate may be configured to channel cooling air through the cooling chamber from the leading edge to the trailing edge.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a body portion having an exterior surface and an internal surface. A cavity is disposed inside of the body portion. A cooling hole extends between the exterior surface and the internal surface and includes a metering section having an outlet and an inlet. The inlet is shaped dissimilar to the outlet.
Abstract:
A method of machining cooling holes in a component includes the steps of inserting an electro discharge machining guide that houses an electrode into an internal cavity of a component, and machining a cooling hole into a wall of the component with the electrode. A gas turbine engine component includes first and second spaced apart walls providing an internal cavity. The first wall has outer and inner surfaces. The inner surface faces the internal cavity. A cooling hole extends through the first wall from the inner surface to the outer surface. The cooling hole includes entry and exit openings respectively provided in the inner and outer surfaces. The exit opening includes a cross-sectional area that is smaller than a cross-sectional area of the entry opening.
Abstract:
A gas turbine engine component includes a structure having a cooling passage providing upstream and downstream portions separated from one another by an inner wall and fluidly connected by a bend. First and second trip strips are respectively arranged in the upstream and downstream portions. The first trip strips are arranged at a first spacing from one another. The second trip strips are arranged at a second spacing from one another. A turbulence promoter is arranged in the bend and at a third spacing from the first trip strips that is different than the first spacing. The turbulence promoter is arranged at a fourth spacing from the second trip strips that is different than the second spacing.