Abstract:
A turbine stator vane with a closed-loop sequential impingement cooling circuit with an impingement cooling insert that includes a three-pass serpentine flow cooling circuit, where each leg of the circuit includes a cooling air supply channel and a return channel with rows of impingement cooling holes and rows of return openings connecting them together. Cooling air return channels are located at the outer diameter and the inner diameter of the vane to direct cooling air from the first leg and into the second and third legs in series. Impingement holes are formed on impingement surfaces that alternate with return slots formed in the insert.
Abstract:
A combustor assembly for use in a gas turbine engine includes a combustor liner that defines a combustion chamber and includes an axial combustion portion and a curved transition portion. The combustion liner also includes an inner surface and an outer surface and a first plurality of cooling channels defined between the inner and outer surfaces. The combustor assembly also includes a sleeve substantially circumscribing the combustor liner such that an annular cavity is defined between the combustor liner and the sleeve. The sleeve includes a second plurality of cooling channels defined therethrough that are configured to channel a fluid against the combustor liner outer surface.
Abstract:
L'invention concerne une aube d'un distributeur d'une turbomachine équipée d'un système de refroidissement comprenant un insert (22) agencé à l'intérieur d'une cavité (24) interne de ladite aube, relié à une entrée (26) d'air de refroidissement de l'aube et adapté pour refroidir la surface de la cavité (24) interne de l'aube, un dispositif de prélèvement, configuré pour prélever une partie de l'air de refroidissement à l'intérieur de l'insert (22) et adapté pour la transmettre vers un moyeu central de la turbomachine. Le dispositif de prélèvement comprend une tête (30) de prélèvement, disposée dans la cavité (24) interne de l'aube et traversant une ouverture (34) de l'insert, et configurée pour prélever une partie de l'air de refroidissement à l'intérieur de l'insert (22).
Abstract:
Carter pour machines tournantes, en particulier pour turbomachines, comprenant une chambre (2) destinée au logement d'une turbine, et un conduit (3) de circulation de gaz débouchant dans ladite chambre, le carter présentant au moins un évidement (4) entourant au moins une partie du conduit de circulation de gaz (3). Turbomachine comprenant un carter correspondant et procédé de fabrication de carter correspondant.
Abstract:
An arrangement (14) including: a wall (34) having raised ribs (36) defining a perimeter (66) and a plurality of pockets (52) within the perimeter; a stud (100) extending from the wall into a respective pocket; a cover sheet (12) disposed over the wall and in contact with the perimeter; an array of sheet landings (70) formed in the cover sheet, each sheet landing extending into a respective pocket and having an impingement hole (76); a stud hole (110) formed in one of the sheet landings for receiving the stud there through; a spacer (102) spanning the stud hole and having an opening receiving the stud there through, and a fastener (104) engaged onto the stud and urging the spacer and cover sheet toward the wall to preload the cover sheet against the perimeter, the spacer leg establishing a positive stop controlling a magnitude of the perimeter preload (92).
Abstract:
A ring segment system (100) for a gas turbine engine (10) is disclosed. The ring segment system (100) may be formed from ring segments (50) that circumferentially surround a rotor assembly (40). The ring segments (50) may each include a carrier portion (34) that is coupled to a vane carrier (28), and a heat shielding portion (38) that is detachably coupled to the carrier portion (34). The detachable coupling may allow the heat shielding portion (38) to be uncoupled from the carrier portion (34) and removed from the gas turbine engine (10) axially. The ring segments (50) may further include cooling fluid supply channels (72) that allow cooling fluid to flow from a radially outward facing backside (42) of the ring segments (50) to a radially inward facing front side (46). Additionally, the ring segments (50) may also include ingestion prevention channels (76) that allow cooling fluid to create a barrier over the gap (80) between the ring segments (50) and the adjacent vane (18).
Abstract:
Die Erfindung betrifft eine Strömungsmaschine, insbesondere eine Dampfturbine (2, 12, 13), mit einer Abschirmung (27) und einer Kühlmittelzuführung (36), die einen kalten Zwischenüberhitzerdampf auf den Rotor (21) strömt, wobei zusätzlich in die Abschirmung (27) Zuführungsbohrungen angeordnet sind, die einen Teil des heißen Einströmdampfes in den Kühlbereich (37) zwischen Abschirmung (27) und Rotor (21) bringt, um dadurch eine bessere Vermischung zu haben, um die Temperatur des Rotors (21) an dieser thermisch belasteten Stelle zu erhöhen, damit in einem Störfall (Ausfall der Kühlmittelleitung) der Temperaturwechsel moderat ausfällt.
Abstract:
The present invention relates to a turbine assembly (10, 10a, 10b) comprising a basically hollow aerofoil (12) having at least a main cavity (14) with at least an impingement tube (16, 16b), which is insertable inside the main cavity (14) of the hollow aerofoil (12) and is used for impingement cooling of at least an inner surface (18) of the main cavity (14), and with at least a platform (20, 20'), which is arranged at a radial end (22, 22') of the hollow aerofoil (12), and with at least a cooling chamber (24, 24') used for cooling of at least the platform (20, 20') and which is arranged relative to the hollow aerofoil (12) on an opposed site of the at least one platform (20, 20') and wherein the at least one cooling chamber (24, 24') is limited at a first radial end (26, 26') by at least one a wall segment (28, 28') of the platform (20, 20') and at an opposed radial second end (30, 30') from at least a cover plate (32, 32'), and wherein the impingement tube (16, 16b) extends in span wise direction (34) at least completely through the cooling chamber (24, 24') from the platform (20, 20') to the cover plate (32, 32'). To minimised aerofoil cooling feed temperatures and increase impingement cooling effectiveness the impingement tube (16, 16b) restricts a sub-cavity (36) of the main cavity (14) and wherein the at least one wall segment (28, 28') of the at least one platform (20, 20') comprises at least one entry aperture (38, 38'; 38a, 38a') for a cooling medium (40) to enter through the at least one entry aperture (38, 38'; 38a, 38a') from the at least one cooling chamber (24, 24') of the at least one platform (20, 20') into the sub-cavity (36) of the hollow aerofoil (12).