Abstract:
A device that may be used as a multi-color pixel is provided. The device has a first organic light emitting device, a second organic light emitting device, a third organic light emitting device, and a fourth organic light emitting device. The device may be a pixel of a display having four sub-pixels. The first device may emit red light, the second device may emit green light, the third device may emit light blue light and the fourth device may emit deep blue light.
Abstract:
A device is provided. The device includes an anode, a cathode and a double emissive layer disposed between the anode and the cathode. The double emissive layer includes a first organic emissive layer and a second organic emissive layer. The first organic emissive layer includes a first phosphorescent material having a concentration of 15-35 wt% in the first organic emissive layer, and a peak emissive wavelength in the visible spectrum at a wavelength between 400 nm and 500 nm; and a first host material having a triplet energy at least 0.2 eV and not more than 1.0 eV greater than the triplet energy of the first phosphorescent material. The second organic emissive layer includes a second phosphorescent material having a concentration of 15-35 wt% in the second organic emissive layer, and a peak emissive wavelength in the visible spectrum at a wavelength between 500 nm and 600 nm, and a third phosphorescent material having a concentration of 0.1 - 3 wt% in the second organic emissive layer, and a peak emissive wavelength in the visible spectrum at a wavelength between 600 nm and 700 nm. The second host material has a triplet energy greater than that of the third phosphorescent emissive material. The second organic emissive layer is disposed between the anode and the cathode, and is adjacent to the first organic emissive layer. The device also includes a blocking layer disposed adjacent to the second organic emissive layer and between the second organic emissive layer and the anode. The blocking layer has a lowest unoccupied molecular orbital that is at least 0.1 eV greater than the lowest unoccupied molecular orbital of the second host material. The device also includes a hole transport layer disposed between the blocking layer and the anode. At least one of the anode and the cathode is transmissive.
Abstract:
Novel combination of materials and device architectures for organic light emitting devices are provided. In some aspects, specific charge carriers and solid state considerations are features that may result in a device having an unexpectedly long lifetime. In some aspects, emitter purity is a feature that may result in devices having unexpectedly long lifetime. In some aspects, structural and optical considerations are features that may result in a device having an unexpectedly long lifetime. In some aspects, an emissive layer including an organic phosphorescent emissive dopant and an organic carbazole host material results in devices having an unexpectedly long lifetime.
Abstract:
An organic light emitting device is provided. The device has a first electrode, a second electrode, and an emissive layer disposed between the first and second electrodes. The emissive layer includes an emissive material with an intrinsic emission spectrum having a peak emission wavelength in the visible spectrum less than 500 nm. The device includes a color saturation enhancement layer in direct contact with the first electrode. The color saturation enhancement layer consists essentially of one or more metals or conductive doped inorganic semiconductors, and has an index of refraction at least 0.2 different from that of the organic layers. The color saturation enhancement layer has a thickness of 1 - 10 nm. The reflectivity of the color saturation enhancement layer is in the range 5% to 30% for the peak wavelength in the intrinsic emission spectrum of the emissive material. Preferably, the color saturation enhancement layer is disposed between the first and second electrodes.
Abstract:
The present invention provides an OLED in which an organic thin film layer comprising a single layer or plural layers is provided between a cathode and an anode, where the organic thin film layer comprises at least one light emitting layer, and the at least one light emitting layer comprises (a) a host material represented by the following Formula (1): Ra-Ar 1 -Ar 2 -Rb (1) where Ar 1 , Ar 2 , Ra and Rb represent a substituted or unsubstituted benzene ring or a condensed aromatic hydrocarbon group selected from a substituted or unsubstituted naphthalene ring, chrysene ring, a substituted or unsubstituted fluoranthene ring, triphenylene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted benzophenanthrene ring, a substituted or unsubstituted dibenzophenanthrene ring, a substituted or unsubstituted benzotriphenylene ring, a substituted or unsubstituted benzochrysene ring, a substituted or unsubstituted picene ring and a substituted or unsubstituted benzofluoranthene ring; and (b) at least one phosphorescent material comprises a phosphorescent organometallic complex having a substituted chemical structure represented by one of the following partial chemical structures represented by the formulas: wherein each R is independently hydrogen or an alkyl substituent having 1-3 carbon atoms, and wherein at least one ring of the formula has one or more of said alkyl substituent.
Abstract translation:本发明提供了一种OLED,其中在阴极和阳极之间设置包括单层或多层的有机薄膜层,其中有机薄膜层包括至少一个发光层,并且所述至少一个发光 层包含(a)由下式(1)表示的主体材料:Ra-Ar1-Ar2-Rb(1)其中Ar1,Ar2,Ra和Rb表示取代或未取代的苯环或稠合芳族烃基, 取代或未取代的萘环,环,取代或未取代的荧蒽环,三亚苯环,取代或未取代的菲环,取代或未取代的苯并菲环,取代或未取代的二苯并菲环,取代或未取代的苯并亚苯基环, 或未取代的苯并环,取代或未取代的吡啶环和取代或未取代的苯并荧烷 e ring 和(b)至少一种磷光材料包含具有由下式表示的以下部分化学结构之一表示的取代的化学结构的磷光有机金属络合物:其中每个R独立地是氢或具有1-3个碳原子的烷基取代基, 并且其中至少一个下式的环具有一个或多个所述烷基取代基。
Abstract:
An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt%. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non-emissive layer comprises the first non-emissive organic material.
Abstract:
An organic light emitting device is provided. The device includes an anode and a cathode. A first organic layer is disposed between the anode and the cathode. The first organic layer is an emissive layer that includes a first organic emitting material. The device also includes a second organic layer disposed between the anode and the first organic layer. The second organic layer is a non-emissive layer. The second organic layer includes an organic small molecule hole transport material having a concentration of 50 to 99 wt%, and an organic small molecule electron transport material having a concentration of 0.1 to 5 wt%. Other materials may be present.
Abstract:
The present invention provides an OLED with an emissive region comprising a plurality of sets of organic layers, each set comprising a non-continuous emissive layer and a neat nonemissive layer. The present invention also provides an OLED with an emissive region comprising a plurality of sets of organic layers, each set comprising an emissive layer and a neat non-emissive layer, wherein the energy gaps of the emissive layer and the non-emissive layer are not nested. The present invention also provides a method for making OLEDs by depositing on a substrate an anode, a plurality of sets of organic layers, each set comprising an emissive layer and a non-emissive layer wherein each layer is deposited sequentially, and a cathode.
Abstract:
An organic light emitting device is provided. The device includes an anode, a cathode, and an organic emissive stack disposed between the anode and the cathode. The device may be a "pixel" in a display, capable of emitting a wide variety of colors through the use of independently addressable "sub-pixels," each subpixel emitting a different spectrum of light. In the most general sense, the device includes a first subpixel and a second subpixel, and at least one of the anode and the cathode has independently addressable first and second regions corresponding to the first and second subpixels. The device includes an emissive stack disposed between the anode and the cathode. The emissive stack includes a first organic emissive layer and a second organic emissive layer. The first organic emissive layer is disposed between the anode and the cathode, and extends throughout the first and second regions. The second organic emissive layer is disposed between the anode and the cathode, and extends throughout the second region but not the first region. The second organic emissive layer is disposed closer to the cathode than the first organic emissive layer. The first organic emissive layer is emissive in the first region, and the second organic emissive layer is emissive in the second region.
Abstract:
An organic light emitting device is provided having an emissive layer with an internal interface. The concentration of a second phosphorescent material in a second organic layer is different from the concentration of a first phosphorescent material in a first organic layer, creating the interface. The materials in the first and second organic layers may be the same or different. In addition to this interface within the emissive layer, the device has one or more features designed to mitigate failure mechanisms which may be associated with electrons or excitons passing from the cathode through the emissive layer to damage organic layers on the anode side of the emissive layer. In addition, devices are provided having an interface within the emissive layer as described above, and a lower energy emissive material on at least one side of the interface.