摘要:
The device includes first, second and third subpixels (1020, 1030, 1050). The first sub-pixel (1020) includes an emissive layer (1023) having a first emitting material but not a second emitting material. The second sub-pixel (1030) includes an emissive layer (1034) having the second emitting material but not the first emitting material. The third sub-pixel (1050) includes an emissive layer (1053, 1054) having both the first and second emitting materials. For a three subpixel device, a first electrode layer is deposited, having a first sub-pixel and a second sub-pixel. Then, in a first patterned deposition process, a first emitting material is deposited on the first sub-pixel and the third sub-pixel, but not the second sub-pixel. Then, in a second patterned deposition process, a second emitting material is deposited on the second sub-pixel and the third sub-pixel, but not the first sub-pixel.
摘要:
An organic light emitting device is provided. The device includes an anode, a cathode, and an organic emissive stack disposed between the anode and the cathode. The device may be a "pixel" in a display, capable of emitting a wide variety of colors through the use of independently addressable "sub-pixels," each subpixel emitting a different spectrum of light. In the most general sense, the device includes a first subpixel and a second subpixel, and at least one of the anode and the cathode has independently addressable first and second regions corresponding to the first and second subpixels. The device includes an emissive stack disposed between the anode and the cathode. The emissive stack includes a first organic emissive layer and a second organic emissive layer. The first organic emissive layer is disposed between the anode and the cathode, and extends throughout the first and second regions. The second organic emissive layer is disposed between the anode and the cathode, and extends throughout the second region but not the first region. The second organic emissive layer is disposed closer to the cathode than the first organic emissive layer. The first organic emissive layer is emissive in the first region, and the second organic emissive layer is emissive in the second region.
摘要:
Novel combination of materials and device architectures for organic light emitting devices are provided. In some aspects, specific charge carriers and solid state considerations are features that may result in a device having an unexpectedly long lifetime. In some aspects, emitter purity is a feature that may result in devices having unexpectedly long lifetime. In some aspects, structural and optical considerations are features that may result in a device having an unexpectedly long lifetime. In some aspects, an emissive layer including an organic phosphorescent emissive dopant and an organic carbazole host material results in devices having an unexpectedly long lifetime.
摘要:
An organic light emitting device comprising an anode, a cathode, and an emissive layer, located between the anode and the cathode, of a host compound, a first compound capable of phosphorescent emission at room temperature, and a second compound capable of phosphorescent emission at room temperature is provided. At least 95 percent of emission from the device is produced from the second compound when an appropriate voltage is applied across the anode and cathode.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include a molecule of Formula (I) wherein an alkyl substituent at position R' 5 results in high efficiency and operational stability in the organic light emitting device. Additionally or alternatively, the emissive layer may include a metal-ligand complex in which the ligand is an aryl or alkyl substituted phenylpyridine ligand.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include a molecule of Formula I wherein an alkyl substituent at position R' 5 results in high efficiency and operational stability in the organic light emitting device. Additionally or alternatively, the emissive layer may include a metal-ligand complex in which the ligand is an aryl or alkyl substituted phenylpyridine ligand.
摘要:
An improved OLED includes an emissive layer disposed between a cathode and an anode where the emissive layer includes a multi-component host material and a phosphorescent emitter material. The host material includes at least a first host compound and a second host compound, where the first host compound is hole-transporting host compound having the general formula wherein R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 may be the same or different fluorine atom, chlorine atom, a deuterium atom, a cyano group, a trifluoromethyl group, a nitro group, linear or branched alkyl group (C1-C6), cyclo-alkyl group (C5-C10), linear or branched alkoxy group (C1-C6), cyclo-alkoxy group (C5~C10), substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted condensed polycyclic aromatic group, r 1 , r 4 , r 5 = 0, 1, 2, 3, or 4 r 2 , r 3 , r 6 ; = 0, 1, 2 or 3 n = 0 or 1, and Ar 1 , Ar 2 , and Ar 3 may be the same or different, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted condensed polycyclic aromatic group, deuterium substituted aromatic hydrocarbon group, deuterium substituted aromatic heterocyclic group, or deuterium substituted condensed polycyclic aromatic group.
摘要:
Organic light-emitting devices having a multi-component organic electroluminescent layer. The organic electroluminescent layer comprises a phosphorescent dopant and a host material that is a mixture of at least three different compounds: a wide band gap host compound, an electron-transporting host compound, and a hole-transporting host compound. Use of such a multi-component organic electroluminescent layer may improve device efficiency and lifetime.
摘要:
A quad pixel device is provided, wherein each pixel comprises a first, second, third and fourth OLED (1001, 1002, 1003, 1004). Each OLED independently has a first electrode (1301, 1302, 1303, 1304), a second electrode (1330), an organic emissive stack (1311, 1312, 1313, 1314) having an emitting material, a first organic stack (1232, 1022, 1024, 1026, 1234) between and in contact with the first electrode and the emissive stack and a second organic stack (1320) between and in contact with the second electrode and the emissive layer. The organic emissive stacks of the first, second, third and fourth OLED have different emissive spectra. The first organic stacks of the first, second and third OLED are different from each other in materials or thickness, or both. The first organic stacks of the third and the fourth OLED are the same.
摘要:
Novel devices comprising a layer including compounds that are capable of triplet triplet annihilation up conversation (TTA-UC). In particular, the up-conversation layer absorbs light emitted by the OLED device and emits up-converted light with shorter wavelength in response. These devices may be used to provide improved lifetime for blue emitting devices.