Abstract:
A data storage and retrieval device and method is disclosed. The device includes at least one magnetic storage medium configured to store target data and at least one re-configurable logic device comprising an FPGA coupled to the at least one magnetic storage medium and configured to read a continuous stream of target data therefrom, having been configured with a template or as otherwise desired to fit the type of search and data being searched. The re-configurable logic device is configured to receive at least one search inquiry in the form of a data key and to determine a match between the data key and the target data as it is being read from the at least one magnetic storage medium. This device and method can perform a variety of searches on the target data including without limitation exact and approximate match searches, sequence match searches, image match searches and data reduction searches. This device and method may be provided as part of a stand-alone computer system, embodied in a network attached storage device, or can otherwise be provided as part of a computer LAN or WAN.
Abstract:
A data storage and retrieval device and method is disclosed. The device includes at least one magnetic storage medium configured to store target data and at least one re-configurable logic device comprising an FPGA coupled to the at least one magnetic storage medium and configured to read a continuous stream of target data therefrom, having been configured with a template or as otherwise desired to fit the type of search and data being searched. The re-configurable logic device is configured to receive at least one search inquiry in the form of a data key and to determine a match between the data key and the target data as it is being read from the at least one magnetic storage medium. This device and method can perform a variety of searches on the target data including without limitation exact and approximate match searches, sequence match searches, image match searches and data reduction searches. This device and method may be provided as part of a stand-alone computer system, embodied in a network attached storage device, or can otherwise be provided as part of a computer LAN or WAN. In addition to performing search and data reduction operations, this device may also be used to perform a variety of other processing operations including encryption, decryption, compression, decompression, and combinations thereof.
Abstract:
A vernier magnetic recording head (30) comprises multiple read and write transducers. The write transducers (32, 34, 36, 38 and 40) are equally spaced a first distance apart and the read transducers (42, 44, 46, 48, 50 and 51) are equally spaced a second distance apart. The write transducers initially write a plurality of equally spaced servo tracks (52, 54, 56, 58 and 60) which can be subsequently tracked by the read transducers. The write transducers may then be used to successively write a plurality of data tracks (62, 64, 66, 68 and 70) to one side of each servo track. The read transducers are positioned relative to the write transducers such that one read transducer is always positioned to track a servo track while the write transducers are writing the data tracks, thereby positioning the data tracks equidistant and parallel to or concentric with the servo tracks. One read transducer is positioned to track a servo track as the head is positioned at an extreme so that read transducers read data from the furthest data tracks, and the head may be positioned to write an adjacent set of new servo tracks.
Abstract:
Data recorded on a magnetic medium (22) may be securely identified and manipulated for use in credit balance applications by determining a magnetic fingerprint benchmark (26) on the medium as well as a distance (d) between this benchmark and any pre-selected magnetic feature such as a magnetic transition (28) of a data bit of the data set. Verification of the data may be achieved by measuring this distance and comparing it with the distance recorded at the time that the data was originally placed on the medium. As there is a detectable difference in accuracy between reading this distance as contrasted with illegitimate attempts to write false data at a pre-selected distance from the benchmark, attempts at forgery are detectable.