Abstract:
The present invention is generally drawn to optical network architecture that can include a multi-subscriber optical interface that can service a plurality of subscribers that are located in close proximity relative to one another. For example, the multi-subscriber optical interface can service multiple dwelling units such as an apartment complex that has many different subscribers to the optical network system. Further, the invention can also service subscribers over the same optical waveguide who may have different bandwidth needs, such as businesses, personal/home users and the like.
Abstract:
A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, sich as software executing in a general purpose microprocessor.
Abstract:
A return path may include a modem pair that is coupled to existing electrical waveguides in a structure such as a house or office building. Specifically, a first modem of the modem pair may be coupled to a first end of a coaxial cable and to a video service terminal. A second modem of the modem pair may be coupled to a second end of the coaxial cable and a data interface. The first modem can modulate video control return packets onto an RF carrier that is propagated over the coaxial cable to the second modem. The video control return packets can be formatted as Ethernet type packets. The second modem can demodulate the RF carrier to extract the video control return packets and to forward these packets towards a data service hub.
Abstract:
An inventive system capable of being utilized in environments where laser transreceiver nodes may be subject to extreme temperatures. Temperature changes in the laser transreceiver nodes may be compensated for by utilizing a wide wavelength channel allocation for data sent upstream from the laser transreceiver nodes to the data service hub. The wavelength channel allocations for upstream data may be wider than the wavelength channel allocations for downstream data. An exemplary embodiment of the inventive system may comprise a data service hub connected to one or more laser transreceiver nodes by one or more optical waveguides. Some embodiments with multiple optical waveguides are capable of practicing route redundancy. According to an exemplary embodiment of the inventive system, the optical waveguides are capable of carrying multiple optical signals at different wavelengths in order to serve a plurality of laser transreceiver nodes.
Abstract:
An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
Abstract:
Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber. In one exemplary embodiment, a weighted random early discard (WRED) priority value can be assigned according to the type of communication traffic supported by a packet.
Abstract:
An optical network can include a data service hub (110), a laser transceiver node (120), and a subscriber optical interface (140). The data service hub can comprise a satellite antenna (375) and a RF receiver (380) for receiving satellite TV-band electrical signals. These electrical signals can be converted into the optical domain and then propagated over the optical network through optical waveguides to the subscriber optical interface. The subscriber optical interface (140) can comprise an optical filter (565) and a satellite analog optical receiver (570). The optical filter (565) can separate the satellite TV-band optical signals having a first optical wavelength from other optical signals such as cable TV-band optical signals with a second optical wavelength and data optical signals with a third optical wavelength. The satellite analog optical receiver can further comprise various mechanisms for controlling access to the satellite TV-band signals.
Abstract:
An enclosure (200) for facilitating and protecting splices or connections between communication transmission mediums includes a housing (204) having a first port (P1) and a drop port (P4-P11). The first port can allow a distribution cable (150) containing a transmission medium to enter the housing. The drop port allows another transmission medium to enter the housing, and it can allow a transmission medium to be added or removed without disturbing existing transmission media or connections in the housing. A drop plug (406, 408) can be provided to seal the drop port. The enclosure can also include a cover plate (402) having a gasket coupled to its perimeter and being removable with the cover plate. Tow-stage strain relief (304, 306) and single-stage strain relief can be provided for the media entering through the first port and the drop port, respectively.
Abstract:
An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
Abstract:
A modification to a cable modem termination system (CMTS) (111) can include instructing the CMTS to ignore or skip steps of its timing algorithm so that upstream cable modem signals are controlled only by the upstream protocol of the optical network system. According to another exemplary aspect, a time stamp can be added to the upstream cable modem signals so that the CTMS (H l) timing scheme can be used. This time stamp can be used in the data service hub to adjust for the delays that occur while the upstream cable modem signals are sent across the optical network. Another adjustment of the CMTS timing scheme can include using less than a total number of miniature time slots for upstream cable modem transmissions. According to another exemplary aspect, a cable modem termination system (111) can be positioned within a laser transceiver node or a subscriber optical interface.