Abstract:
Less invasive surgical techniques for performing brain surgery are disclosed in which a dilating obturator and cannula assembly is inserted into brain tissue until the obturator tip and cannula are adjacent to the target tissue. The obturator is removed and surgery is performed through the cannula. In preferred embodiments the obturator and cannula are placed using image guidance techniques and systems to coordinate placement with pre-operative surgical planning. A stylet with associated image guidance may be inserted prior to insertion of the obturator and cannula assembly to guide insertion of the obturator and cannula assembly. Surgery preferably is performed using an endoscope partially inserted into the cannula with an image of the target tissue projected onto a monitor. Dilating obturator structures having a rounded or semi-spherical tip and/or an optical window for visualizing brain tissue during expansion are contemplated.
Abstract:
A new reversibly gelling polyurethane (RGP) polymer composition is described, as well as novel processes for its preparation, and its medical uses for filling spaces in tissue, or bulking tissue, or for restoring organ function. The novel RGP polymer forms a gel on standing, liquefies during shear and reversibly reforms a macroscopic gel on standing after being sheared. Methods of use include delivering the improved gel to a site on the body to fill voids or to augment local tissue bulk.