Abstract:
Exemplary control valves that may be configured as a load sense, closed-center, and/or open-center valve. The control valve may include optional individual valve force sensing to potentially allow an operator to smoothly operate devices operating on low-load work ports even when a variable displacement pump is inducing pressure to operate a device connected to a high-load work port of a separate valve or worksection in the same stack. This optional force sensing may be employed on any or all worksections associated with any valve stack, and may further be included on one or both workports for any given worksection. Each worksection may include parallel and variable paths of fluid supplied by the pump. Also, flow priority to one or more worksections or external valves in a corresponding hydraulic system is optional and can be customized using the variable flow path and a corresponding fixed restriction.
Abstract:
A variable capacity evaporator system includes an evaporator having a plurality of independent circuits assembled as a unit, each circuit arranged in circuit groups and defining a fluid flow path, each circuit group including at least one circuit. The system further includes a plurality of flow control devices, each flow control device of the plurality of flow control devices in fluid communication with a respective circuit group and operative to vary a fluid flow through the respective circuit group, and a common header in fluid communication with a low-side each of the plurality of circuit groups. A controller is operatively coupled to each flow control device, the controller including logic configured to independently control each flow control device to regulate fluid flow through the respective circuit group based on a superheat at each circuit group and a superheat at the common header.
Abstract:
An electrical device and servo motor that includes a stator having a plurality of poles, wherein each pole includes a first surface and a second surface; the first surface and the second surface are spaced apart and have a pair of slots defined between the first surface and the second surface on respective sides of each pole. The pair of slots is configured to receive at least one winding, and each pole further includes a cooling tube coupled to the first surface, wherein the cooling tube is at least partially encompassed within the first surface.
Abstract:
One or more electroactive polymer (EAP) strips (20, 54) are circumferentially or lengthwise embedded or mounted around the fluid passage member (20, 52). The EAP strips are configured to function as a pump when a prescribed electrical charge is applied and removed from the EAP strips, which causes the EAP strips to expand and constrict accordingly. A series of these strips may be mounted along a portion of the fluid passage member and electrically actuated in a prescribed manner to exert a squeezing force around the fluid passage member, which functions to pump fluid through the fluid passage member. The EAP strips also change electrical characteristics (e.g., capacitance, resistance) independent of the applied actuation as they are stretched, so they may be used to measure fluid pressure and/or fluid flow rate.
Abstract:
Provided is a hollow rotor and method for making a hollow rotor for a gerotor system, the gerotor system including inner and outer rotors having interengaging lobed profiles. At least one of the inner or outer rotors comprises the hollow rotor, the hollow rotor including radially inner and outer walls radially spaced-apart in relation to a rotational axis of the rotor and walls extending between the radially inner and outer walls for closing axial ends of the hollow rotor. The radially inner and outer walls define therebetween a cavity, thus providing for a hollow or empty interior of the hollow rotor. At least one of the radially inner or outer walls forms a plurality of lobes circumferentially spaced-apart around the cavity.
Abstract:
A rotary valve capable of high flow rates, minimal pressure drop, and rapid actuation is presented. According to one aspect, the rotary valve is characterized by a unique pressure balancing system operating on the rotary spool of the valve to reduce side force caused by pressure at the flow ports. According to another aspect, the rotary valve (700) is characterized by a internal shiftable blocking spool (790) in response to a failure condition or a modulating signal. According to another aspect, an interface is provided for sealing a port of a rotary valve to an outer surface of a rotary spool. According to another aspect, the rotary valve is characterized by an interface provided for sealing a port to an outer surface of the rotary spool. According to another aspect, a rotary valve is characterized by a three-way three-or-more-position configuration. According to another aspect, a rotary valve is characterized by a four-port three-position configuration.
Abstract:
A controller (10) for manually controlling a guidewire (50) includes a housing (100) including a passage (112) for receiving the guidewire. A gripper (140) is actuatable to grasp the guidewire (50) in the passage (112). A cap (200) is connected to the housing (100). The cap (200) is rotatable relative to the housing (100) to actuate the gripper (140). The housing (100) includes an element (160) for maintaining the cap (200) in a receiving position. The cap (200) when in the receiving position places the controller (10) in a condition for receiving the guidewire (50).
Abstract:
Provided is a liquid handling device for use in a liquid handling system including a plurality of the liquid handling devices assembled in side-by-side relationship at a center-to-center spacing of X. The device includes a barrel, plunger, motive device and electronics assembled together in an envelope having a front portion including at least the barrel and plunger, and a rear portion including at least a portion of the electronics. The rear portion has a thickness greater than X but no greater than 2X, and the front portion has a thickness no greater than X and is laterally offset relative to a center plane of the envelope, whereby the liquid handling device can be assembled with another reversely oriented liquid handling device at a center-to-center spacing of X and a total combined width no greater than 2X.
Abstract:
A valve poppet (54) is provided for use in a regulator valve assembly (200) for regulating the pressure of a flowing gas through a gas flow pressure regulator (300). The valve poppet is includes a valve disc (54) having a flexible portion (60a) so as to permit upward and downward movement of a valve stem (52) in an axial direction. The valve disc may have an edge portion (60b) that provides a preloading force to self-align the valve disc within a valve seat (70), and axially constrain the motion of valve stem. The valve stem (52) may extend perpendicularly relative to the valve disc from a sealing portion (58). The movement of the valve stem is axially constrained and results in upward and downward movement of the flexible portion when the valve is opened and closed. The flexible and end portions of the valve disc may be formed of a plurality of spiral arms for self-aligning and axially constraining the valve disc.
Abstract:
A riser clamp (20) comprising a first jaw portion (211) and a second jaw portion (212) that can be opened and closed relative to each other. The jaw portions (211/212) each comprise a thermoplastic body (301/302) that can be, for example, injection molded pieces of polyethylene (e.g., HDPE). The jaw portions (211/212) can be connected by a hinge (39) that is integrally formed therewith. The clamp (20) can also include cradles (701/702) and caps (711/712) for holding auxiliary lines.