Abstract:
Methods, devices and systems are described for decreasing the activity of the sympathetic nervous innervation to and from the lungs and the vessels supplying the lungs to treat pulmonary medical conditions such as asthma. In one embodiment, the method may involve advancing an intravascular instrument to a target location in a blood vessel within the intercostal vasculature to ablate either or both the sympathetic afferent and efferent nerves lying within the paravertebral gutter including the visceral fibers that travel to the cardiothoracic cavity and abdominopelvic viscera and the Tl to T4/5 sympathetic chain. In another embodiment, an intravascular instrument may be advanced to the bronchial vessels to ablate either or both the sympathetic afferent and efferent nerves in and around the posterior pulmonary plexus. In one embodiment the ablative agent is a neurolytic agent delivered in a gel. This approach may be utilized to treat other cardiac and pulmonary diseases.
Abstract:
Apparatus and methods suitable for causing tissue ablation at a specified therapeutic site in the body of a patient. The apparatus comprises an ablation device having a distal end and a proximal end and a central lumen extending along its length, the distal end comprising at least one energy delivery element suitable for causing tissue ablation. A penetrating member having a distal end and a proximal end, the distal end comprising a sharp tip suitable for piercing tissue and creating a channel for the device in the tissue, is coaxially positioned within the central lumen of the ablation device and is capable of being advanced distally out of the central lumen of the device and retracted back to within the central lumen of the device. The apparatus may further comprise an endoscope for delivery of the device to the site of treatment.
Abstract:
A microwave applicator for insertion into living body tissue to provide microwave ablation treatments includes a microwave transmission line extending between an attachment end of the applicator and an antenna toward an insertion end of the applicator with an outer conductive sleeve forming an enclosed fluid space around the transmission line. Circulation of cooling fluid is guided in the fluid space by a guide sleeve. A sensor senses the approximate temperature of the cooling fluid. A portion of the fluid can be injected into tissue surrounding the applicator to hydrate tissue not to be treated. Microwave power may be provided to one or more of the applicators by a system which includes a multiplexing and power splitting circuit providing power outputs tuned for either one or a plurality of applicators and detects the number of applicators and correct connection. The system may provide microwave energy of both 915 MHz and 2450 MHz.
Abstract:
A biopsy needle (80) having a longitudinal channel (84) formed within an inner conductor (86) of a coaxial antenna is disclosed. The coaxial antenna terminates in a rigid insertion tip (82) e.g. a ceramic cone that is insertable into biological tissue. Microwave energy (e.g. having a frequency of 1 to 100 GHz) delivered to the coaxial antenna is emitted at the insertion tip. The insertion tip may be arranged to match the impedance of the coaxial antenna to a predetermined tissue impedance. The emitted radiation can be used to measure properties of or treat (e.g. ablate) tissue at the insertion tip. Needle biopsy apparatus is also disclosed, in which a microwave energy is controllably delivered to a needle from a microwave generator. The apparatus may include an impedance tuner to dynamically match the impedance of the needle with tissue at the insertion tip.
Abstract:
A dipole microwave applicator emits microwave radiation into tissue to be treated. The applicator is formed from a thin coax cable having an inner conductor surrounded by an insulator, which is surrounded by an outer conductor. A portion of the inner conductor extends beyond the insulator and the outer conductor. A ferrule at the end of the outer conductor has a step and a sleeve that surrounds a portion of the extended inner conductor. A tuning washer is attached to the end of the extended inner conductor. A dielectric tip encloses the tuning washer, the extended inner conductor, and the sleeve of the ferrule. The sleeve of the ferrule and the extended inner conductor operate as the two arms of the dipole microwave antenna. The tuning washer faces the step in the ferrule, and is sized and shaped to cooperate with the step in balancing and tuning the applicator.
Abstract:
A system for use in tumor ablation. The tumor ablation system includes a microwave antenna which has a channel along the length thereof. There are two ports proximate the proximal end of the microwave antenna. The first port is an energy port configured to connect the antenna to an energy source. The second port is a fluid port configured to connect the channel to a fluid delivery mechanism. The system also includes an inflatable balloon configured to be attached to a distal end of the antenna. The channel permits fluid access from the fluid port to an interior of the balloon for inflation thereof.
Abstract:
The present invention relates to comprehensive systems, devices and methods for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In certain embodiments, systems, devices, and methods are provided for treating a tissue region (e.g., a tumor) through application of energy.
Abstract:
The present disclosure is directed to an electrosurgical system for imaging and interrogating tissue. The electrosurgical system includes an energy source configured to generate a first energy and an electrosurgical instrument. the electrosurgical instrument includes a transmission line coupled to the energy source and configured to emit the first energy. A mirror reflects the first energy towards a target tissue that emits a second energy. An ultrasonic transducer receives the second energy from the target tissue and converts the second energy into an electrical signal. A controller receives the electrical signal and converts the electrical signal into an image.
Abstract:
A computing device includes a thermal map generator (142)that generates a thermal map for image data voxels or pixels representing a volume or region of interest of a subject based on thermometry image data, which includes voxels or pixels indicating a change in a temperature in the volume or region of interest, and a predetermined change in value to temperature lookup table (144) and a display (146) that visually presents the thermal map in connection with image data of the volume of interest. A method includes generating a thermal map for image data voxels or pixels representing a volume or region of interest of a subject based on thermometry image data, which includes voxels or pixels indicating a change in a temperature in the volume or region of interest, and a predetermined change in voxel or pixel value to temperature lookup table.