Abstract:
There are provided systems and methods for performing mean arterial pressure (MAP) derived prediction of future hypotension. Such a system includes a hardware unit including a hardware processor and a system memory, a hypotension prediction software code stored in the system memory, and a sensory alarm. The hardware processor is configured to execute the hypotension prediction software code to receive MAP data of the living subject, and to transform the MAP data to one or more parameters predictive of a future hypotension event of the living subject. The hardware processor is further configured to execute the hypotension prediction software code to determine a risk score of the living subject corresponding to the probability of the future hypotension event based on at least some of the one or more parameters, and to invoke the sensory alarm if the risk score of the living subject satisfies a predetermined risk criteria.
Abstract:
Methods, systems and apparatuses for determining imbalances in oxygen consumption and carbon-dioxide production are disclosed. In accordance with one aspect of the invention, a method may include determining an amount of oxygen consumed by the patient based on exhaled oxygen of the patient; determining an amount of carbon dioxide produced by the patient based on exhaled carbon dioxide of the patient; calculating a respiratory quotient based on the amount of oxygen consumed by the patient and the amount of carbon dioxide produced by the patient; and determining an amount of imbalance in oxygen consumption and carbon dioxide production by analyzing the respiratory quotient, the amount of oxygen consumed by the patient, and the amount of carbon dioxide produced by the patient using a data processor.
Abstract:
A cardiopulmonary resuscitation (CPR) monitoring device includes an invasive arterial blood pressure (iABP) transducer (20) connected with an arterial cannula or catheter (16) to measure an iABP signal (30). A CPR chest compressions sensor (14, 70, 72) measures a CPR chest compressions signal (74, 76). One or more electronic processors are programmed to: (i) extract a CPR chest compression rate from the CPR chest compressions signal; (ii) compute a CPR chest compressions component (42) of the iABP signal by fitting to the iABP signal a harmonic series whose fundamental frequency is set to the CPR chest compression rate, and (iii) compute a compressions free component (44) of the iABP signal as a difference between the iABP signal and the CPR chest compressions component of the iABP signal. A display component (51) displays at least the compressions free component of the iABP signal.
Abstract:
A medical system for providing a defibrillation therapy to a patient includes a cardiac monitoring device (CMD) configured to sense and record physiological data indicative of the patient's cardiac function. The CMD includes a communication component. The system also includes an external therapy device configured to deliver defibrillation therapy, and configured to be positioned external to and supported by the patient. The external therapy device includes an external therapy device communication component. The CMD communication component and the external therapy device communication component are configured to operatively couple the CMD and the external therapy device to one another, so as to work as a system to detect and treat fibrillation.
Abstract:
A system for assisting with a cardiopulmonary resuscitation (CPR) treatment being administered to a patient. In one aspect, the system includes electrodes to provide an ECG signal of the patient, one or more sensors configured to measure an intrinsic myocardial wall movement of the patient, and one or more processors. The one or more processors are configured to perform operations including: during the CPR treatment being administered to the patient, receiving an input from the sensor(s), processing the input from the sensor(s) and the ECG signal, determining, based on processing, whether the intrinsic myocardial wall movement is indicative of a perfusion movement of the patient's heart, and providing an indication to a user of the system based on the determination.
Abstract:
Dispositivo de medición de las diferencias de conductividad que permite detectar precozmente patologías infecto/inflamatorias peridentales y/o apicales, o de regiones articulares y/o musculares antes inclusode que estas puedan ser detectadas radiológicamente, comprendiendo dicho dispositivo un emisor eléctrico (1) en milivoltios, con una onda eléctrica cuadrada con pico negativo y frecuencia determinadas,definidas por un ancho de pulso e intervalo entre pulsos, que por medio de dos electrodos, uno fijo (2) y otro móvil (3) es capaz de: Provocar en el paciente una leve sensación de hormigueo en la piel inmediatamente por encima de los ápices dentarios o de las regiones articulares y/o musculares así como dermatológico, glandular y tegumentario afectados por inflamación y/o infección. Mostrar al profesional, a través de un display de escala lumínica (15), la intensidad de la afectación del tejido.
Abstract:
A system includes a first computing device comprising a processor coupled to a memory. The processor and the memory are configured to receive at least one of (i) information indicative of treatment of a victim by a first caregiver using the first computing device and (ii) information indicative of a health status of the victim; determine that treatment of the victim by the first caregiver using the first computing device is completed; and transmit the received information to a second computing device.
Abstract:
La présente invention porte sur un procédé de suivi et de surveillance en temps réel de l'état pathologique d'un patient cérébro-lésé comprenant l'acquisition d'une pluralité de paramètres cérébraux et systémiques dudit patient et de calcul périodique d'une variable représentative de l'état du patient en fonction desdits paramètres cérébraux et systémiques, pour commander un moyen d'affichage de ladite variable représentative de l'état du patient. Lesdits paramètres cérébraux comprennent la pression intracrânienne et la pression de perfusion cérébrale, les paramètres systémiques comprennent la température du patient, l'osmolarité et la pression partielle artérielle en C02. L'on procède également à l'acquisition d'au moins un paramètre clinique comprenant la sédation, lesdits paramètres systémiques et cliniques caractérisant l'intensité thérapeutique employée. Le procédé comporte des étapes d'échantillonnage et de segmentation desdits paramètres cérébraux, systémiques et cliniques en fonction de l'appartenance des valeurs mesurées à des intervalles prédéterminés.
Abstract:
A method is provided for noninvasive, continuous, real-time monitoring of a patient's arterial blood pressure using Doppler probes and a blood pressure cuff for measurement of a patient's systolic and diastolic blood pressures at a major distal artery and at the carotid artery or the middle cerebral artery. A continuous Doppler blood flow velocity measurement is used to generate a waveform signal correlating to a cuff's measurements of systolic and diastolic pressures. An algorithm generates calculated systolic and diastolic pressures at a major, distal artery and at the carotid artery or the middle cerebral artery as a function of the continuously measured Doppler blood flow velocities.