Abstract:
The present embodiments provides improved devices, systems, and methods for affecting changes in pupil sizes before a laser eye procedure and using those images for alignment before and/or during a diagnostic and/or treatment procedure of the eye, particularly during laser eye surgery procedures. The embodiments provide methods and systems for tracking pupil position and torsional cyclorotation of a patient's eye. In one exemplary embodiment, the present embodiments provides methods and software for registering a photopic image of an eye captured by a laser device to the eye images of the patient's eye using a scotopic image and a photopic image captured simultaneously during wavefront exam.
Abstract translation:本实施例提供了改进的设备,系统和方法,用于在激光眼程序之前影响瞳孔大小的变化,并在诊断和/或治疗程序之前和/或期间将这些图像用于对准 眼睛,特别是在激光眼科手术过程中。 这些实施例提供用于跟踪患者眼睛的瞳孔位置和扭转旋转的方法和系统。 在一个示例性实施例中,本实施例提供了用于使用在波前检查期间同时捕获的暗视图像和明视图像将由激光设备捕获的眼睛的明视图像配准到患者眼睛的眼睛图像的方法和软件。 p >
Abstract:
The present disclosure relates to systems and methods for marking an undeformed cornea with a mark to allow later detection of a selected location on the cornea after deformation and to systems of methods for performing vision correction surgery based on the mark.
Abstract:
A method of imaging an object includes obtaining an image data set from a raster scan. The image data set has a plurality of data points, each data point having an associated location and intensity; generating a reduced data set by selectively removing one or more data points from the image data set based upon an assigned probability of retaining the one or more data points in the data set, the assigned probability being a function of the intensity of a data point; generating a triangulation graph as a planar subdivision having faces that are triangles, the vertices of which are the data points and the edges of which are adjacent vertices; and segmenting the triangulated data set by finding a path with lowest cost between that vertex and every other vertex, wherein the cost is a function of the respective intensity of the vertices.
Abstract:
Die Erfindung betrifft eine Anordnung, insbesondere eine ophthalmologische Therapieanordnung zur Bearbeitung einer Fläche (11) in einem Bearbeitungsvolumen (300) eines transparenten Materials (3) mittels einer fokussierten Strahlung (1) mit einer Einrichtung zur Erzeugung (100) und einer Optik (2, 200, 202) zur Fokussierung einer Strahlung (1), mit einer Einrichtung zur Veränderung (400) der Lage des Fokus (4) der fokussierten Strahlung und mit einer Steuereinrichtung (500). Die Erfindung betrifft weiterhin ein entsprechendes Verfahren, ein Steuerprogrammprodukt sowie eine Planungseinheit. Ihre Aufgabe ist es, eine Anordnung und ein Verfahren zur Bearbeitung einer Fläche (11) zu beschreiben, die ein Arbeiten mit einer kostengünstige Optik (2, 200, 202) erlauben, die Bearbeitung der Fläche (11) jedoch in höchster Qualität erfolgt. Diese Aufgabe wird gelöst durch eine Anordnung, die eingerichtet ist, in jeder beliebigen Richtung eine langsame Scanbewegung des Fokus (4) im Bearbeitungsvolumen (300) des transparenten Materials (3) und eine unabhängige schnelle Scanbewegung des Fokus (4) in einem Teilbereich (600) des Bearbeitungsvolumens (300) zu vollziehen, der durch die langsame Scanbewegung im gesamten Bearbeitungsvolumen (300) bewegbar ist; sowie durch eine Anordnung, in die ein Scanmuster kodiert ist, das eine Scanbewegung mit mindestens einer lateralen Grundkomponente (13) in x- und/oder y-Richtung aufweist, die überlagert ist von Komponenten synchroner Richtungswechselbewegungen in z-Richtung und in x-Richtung und/oder y-Richtung. Die Aufgabe wird weiterhin gelöst durch entsprechende Verfahren, ein Steuerprogrammprodukt und eine Planungseinheit.
Abstract:
Disclosed are a method and a device (10) for controlling an eye surgery system, wherein a light pattern is generated on an eye (30) by an illumination device (12) and is captured by a camera unit (11) while the patient is in the position in which he or she will undergo the surgery. At least one property of the eye (30) characterizing the current orientation of the eye (30) during the surgery is determined from the light pattern (40) by a computing unit (13).
Abstract:
Active dichoptic perceptual-learning tasks or dichoptic game play have been shown to significantly improve visual acuity of amblyopic children and adults. However, these dichoptic perceptual learning tasks are intensive and repetitive such that non-compliance is high. In contrast, the invention provides dichoptic perceptual learning in a manner that the user maintains its use and compliance is increased. Further, compliance becomes automatic if the user performs tasks in a normal manner and "forgets" that they are actually undergoing treatment as it is integrated with minimal disruption to their life and activities. Accordingly, a methodology exploiting complementary dichoptic stimulation is presented.
Abstract:
Embodiments of this invention relate to systems and methods for providing anatomical flap centration for an ophthalmic laser treatment system. In one embodiment, the laser surgery system, having an imaging system and a suction ring coupled with a patient interface, captures a digital image of a subject's eye and identifies an optimum treatment placement of the corneal flap using anatomical markers as reference points.
Abstract:
Rather than rely solely upon pupillary occlusion or tracking of eye movement to protect the fundus from accidental exposure to electromagnetic radiation, the present invention also utilizes an electromagnetic radiation pathway with a profile such that the energy density at the iris is greater than the energy density at the posterior portion of the eye. This disparity in energy density allows for efficacy at the anterior iris treatment site, without injury to the fundus.
Abstract:
Daif's Corneal Visual Center (CVC) Localizer (Locator) is a point Light Source of Infra Red (IR) light, attached and fixed to any eximer laser machine, located at equal distance and in exactly opposite direction from the middle of a detecting camera that detects IR light reflection from the corneal surface and the pupillary margin of the iris with a point fixation target or its virtual extension, perpendicular to the plan containing the localizer and the middle point the inlet of the detecting camera, exactly in the middle of the distance between the localizing point light source and the middle point the detecting camera. With the Localizer in position and activated, the CVC will be seen on the screen of IR eye tracking as a white dot somewhere inside the white circle that represents the detected pupillary margin. The center of the pupil is automatically detected by the eye tracking software system and is marked on the screen by a cross which will considered by treatment software of the machine as the center of the refraction correction laser treatment. After accurate in-focus positioning of eye to be treated with the patient fixing the fixation target, the position of this cross could be manually changed to the position of the white dot representing the CVC and confirming by OK button. The relation between the CVC and the pupillary margin image is automatically fixed by the eye tracking system all over the whole laser treatment of this particular eye.
Abstract:
Exemplary methods and systems help provide for tracking an eye. An exemplary method may involve: causing the projection of a pattern onto an eye, wherein the pattern comprises at least one line, and receiving data regarding deformation of the at least one line of the pattern. The method further includes correlating the data to iris, sclera, and pupil orientation to determine a position of the eye, and causing an item on a display to move in correlation with the eye position.