Abstract:
A layer of superalloy metal foam (20) is deposited onto a superalloy substrate (14) by laser melting (16) a powder mixture (10) containing particles of a superalloy metal (22) and particles of a foaming agent (24). A gas turbine engine component (30) is formed to include such metal foam. A ceramic thermal barrier coating material (31) may be applied directly over the metal foam without an intervening bond coat layer.
Abstract:
A layer of a powdered material (4) is heated with an energy beam (10) such that at least one gas-generating agent (8) reacts to form at least one gaseous substance (14) to produce a void-containing coating (16) adhered to the surface of a substrate (2). The powdered material may contain a metallic material, a ceramic material, or both, and may also contain at least one of a flux material (32) containing the gas-generating agent and an exothermic agent (64). The heating may occur using a laser beam and may induce a melting or sintering of the powdered material to produce the void-containing coating. A gas turbine engine component exhibiting improved thermal and mechanical properties may be formed to include the void-containing coating, which may take the form of a bond coating, a thermal barrier coating, or both.
Abstract:
Eine Anordnung zum Aufbringen von Nanopartikeln aus Metall auf einen Wafer oder ein anderes Substrat, ist gekennzeichnet durch ein in einem Flüssigkeitsreservoir angeordnetes Metall- oder Halbleiterteil; einen Laser oder Teilchenstrahler zum Abtragen von Nanopartikeln von dem Metall- oder Halbleiterteil innerhalb der Flüssigkeit in dem Flüssigkeitsreservoir; und Mittel zum Aufbringen der die abgetragenen Metallpartikel enthaltenden Flüssigkeit auf das Substrat.
Abstract:
A method of forming a thermally stable cutting element may include providing a cutting element including a substrate fixed to a polycrystalline diamond cutting table; enclosing the substrate and at least a portion of the polycrystalline diamond cutting table within a protective element to form a partially enclosed cutting element; exerting a compressive squeeze on the cutting element of about 5-25%; and exposing the partially enclosed cutting element to a leaching solution so that at least part of an unenclosed portion of the polycrystalline diamond table is in contact with the leaching solution.
Abstract:
A continuous flow reactor for the efficient synthesis of nanoparticles with a high degree of crystallinity, uniform particle size, and homogenous stoichiometry throughout the crystal is described. Disclosed embodiments include a flow reactor with an energy source for rapid nucleation of the procurors following by a separate heating source for growing the nucleates. Segmented flow may be provided to facilitate mixing and uniform energy absorption of the precursors, and post production quality testing in communication with a control system allow automatic real-time adjustment of the production parameters. The nucleation energy source can be monomodal, multimodal, or multivariable frequency microwave energy and tuned to allow different precursors to nucleate at substantially the same time thereby resulting in a substantially homogenous nanoparticle. A shell application system may also be provided to allow one or more shell layers to be formed onto each nanoparticle.
Abstract:
Procédé de réparation d'une pièce métallique par rechargement des parties endommagées au moyen de la projection d'une poudre dudit métal sur ladite pièce, caractérisé en ce que le procédé comprend une étape de rechargement par laser desdites parties endommagées à l'aide de ladite poudre, suivie d'une étape de compression isostatique à chaud, la température maximale imposée lors de ladite compression isostatique n'excédant pas la température de recristallisation dudit métal.
Abstract:
A method for creating an organically capped Group IV semiconductor nanoparticle is disclosed. The method includes flowing a Group IV semiconductor precursor gas into a chamber. The method also includes generating a set of Group IV semiconductor precursor radical species from the Group IV semiconductor precursor gas with a laser pyrolysis apparatus, wherein the set of the Group IV semiconductor precursor radical species nucleate to form the Group IV semiconductor nanoparticle; and flowing an organic capping agent precursor gas into the chamber. The method further includes generating a set of organic capping agent radical species from the organic capping agent precursor gas, wherein the set of organic capping agent radical species reacts with a surface of the Group IV semiconductor nanoparticle and forms the organically capped Group IV semiconductor nanoparticle.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Bauteilen, die zumindest teilweise biokompatible Oberflächenbereiche aufweisen. Hierbei wird ein Gemisch aus einem pulverförmigen biokompatiblen Material und einem Binder mittels eines Spritzgussverfahrens in eine Spritzform eingebracht oder mittels eines Spritzgussverfahrens auf eine zu beschichtende Oberfläche aufgebracht; anschliessend erfolgt eine Entbinderung und Sinterung der erzeugten Bauteile, Als pulverförmiges biokompatibles Material wird hierbei eine Mischung eingesetzt, die aus Partikeln mit einer Partikelgrösse zwischen 700 nm und 50 μm und aus 5 Gew.-% bis zu 50 Gew.-% Partikeln mit einer Partikelgrösse kleiner 700 nm besteht.