Abstract:
L'invention concerne un équipement pour le frittage de pièces massives (12) en céramique comprenant une cavité micro-onde (1) et un creuset (11) associé à un support de creuset en céramique réfractaire poreuse ainsi qu'un suscepteur (17, 27) produisant un rayonnement infrarouge sous l'action du rayonnement micro-onde. a) Ladite cavité est une cavité micro-onde multimode couplée par un guide d'onde à un générateur microonde fonctionnant à une fréquence de 2,45 GHz. b) Ledit support est constitué par des pièces indépendantes en céramique réfractaire poreuse comprenant : - un socle (13) - au moins deux bagues (14, 15) axisymétriques emboîtables coaxialement, c) Ledit creuset (11) présente une enveloppe tubulaire fermée par un fond recouvert de billes millimétriques, ledit creuset (11) étant apte à être disposée à l'intérieur de la bague intérieure (15), d) Ledit matériau suscepteur (11) est disposé entre la paroi de ladite bague intérieure (15) et la paroi dudit
Abstract:
The present invention improves the internal gelation process combined with an implementation of the 3D inkjet printing technique for ceramics or metals in order to enable the fabrication of various complex 3D ceramic or metal bodies, such as nuclear fuel pellets and the like.
Abstract:
In a three-dimensional printing method example, a build material is applied. A first liquid functional material is applied on at least a portion of the build material. The first liquid functional material includes ferromagnetic nanoparticles that are selected from the group consisting of an iron oxide, a ferrite, a combination of the iron oxide and a ferromagnetic metal oxide, and combinations thereof. The build material is exposed to electromagnetic radiation having a frequency ranging from about 5 kHz to about 300 GHz to sinter the portion of the build material in contact with the first liquid functional material.
Abstract:
A reinforced composite comprises: a reinforcement material comprising one or more of the following: a carbon fiber based reinforcing material; a fiberglass based reinforcing material; a metal based reinforcing material; or a ceramic based reinforcing material; and a carbon composite; wherein the carbon composite comprises carbon and a binder containing one or more of the following: SiO 2 ; Si; B; B 2 O 3 ; a metal; or an alloy of the metal; and wherein the metal is one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
A carbon composite comprises carbon microstructures having interstitial spaces among the carbon microstructures; and a binder disposed in at least some of the interstitial spaces; wherein the carbon microstructures comprise unfilled voids within the carbon microstructures.
Abstract:
Provided in one implementation is a method of manufacturing a three-dimensional object. The method can include depositing a substantially uniform layer of raw material onto a substrate. The raw material can include ceramic particles. The method can include selectively fusing particles of the raw material to form a first layer of the object. The method can include clearing non-fused particles of the raw material from the first layer of the object. The method can include repeating the steps of depositing a raw material, selectively fusing particles of the raw material, and clearing non-fused particles of the raw material to form additional layers of the object above the first layer.
Abstract:
Disclosed is a method for controlling a microstructure of an inorganic material includes providing a structure that has a first region of an inorganic material having a first microstructure and a second region that is thermally responsive to electromagnetic radiation, the second region being adjacent the first region, and indirectly heating the first region by thermally activating the second region, using electromagnetic radiation, to generate heat. The generated heat converts the first microstructure of the inorganic material to a second, different microstructure. The method can be applied to control a microstructure of an inorganic coating on an inorganic fiber.
Abstract:
A physical configuration of multiple-layer coatings formed with at least one layer of coating containing cubic born nitride (cBN) particles with one or more layers in composite form containing cBN particles may have a thickness of each individual layer as thin as in the nanometer range, or as thick as in the range of a few microns and even up to tens of microns. The chemistry of the composite layer consists of any individual phase of (a) nitrides such as titanium nitride (TiN), titanium carbonitride (TiCN), and hafnium nitride (HfN); (b) carbides such as titanium carbide (TiC); and (c) oxides such as aluminum oxide (AI2O3) or any combination of the above phases, in addition to cBN particles. The coating or film can be stand-alone or on a substrate.
Abstract translation:形成有至少一层包含含有一个或多个含有cBN颗粒的复合形式的层的立方晶体氮化物(cBN))颗粒的多层涂层的物理构型可以具有如纳米范围内的薄的每个层的厚度 ,或者如在几微米甚至几十微米的范围内那样厚。 复合层的化学性质由(a)氮化物,如氮化钛(TiN),碳氮化钛(TiCN)和氮化铪(HfN))的任何单独相组成。 (b)碳化物如碳化钛(TiC); 和(c)除了cBN颗粒之外的氧化物如氧化铝(Al 2 O 3)或上述相的任何组合。 涂层或膜可以是独立的或在基底上。
Abstract:
Die Erfindung bezieht sich auf einen erodierbaren Keramikkörper mit in einer Aluminiumoxid/Zirkoniumdioxid/-Matrix dispergierten elektrisch leitfähigen Hartstoffpartikeln. Vorteilhafte Anpassungsmöglichkeiten an unterschiedliche Anforderungen ergeben, sich dadurch, dass das Zirkoniumdioxid und die Hartstoffpartikel homogen in der Aluminiumoxid-Matrix verteilt sind und der Anteil an Zirkoniumdioxid, das bei einem Anteil von mindestens 10 Vol.-% teilweise oder vollständig stabilisiert ist, bis zu 45 Vol,-% und an den HartstoffpartikeLn höchstens 25 Vol.-% beträgt.
Abstract:
A tungsten carbide material for use in precision glass molding applications having 6.06-6.13 wt. % carbon, 0.20-0.55 wt. % grain growth inhibitor, less than 0.25 wt. % binder, less than 0.6% wt. % impurities, and balance being tungsten. The tungsten carbide material has a nominal grain size of less than 0.5 microns.