Abstract:
A method for conversion of greenhouse gases comprises: introducing a flow of a dehumidified gaseous source of carbon dioxide into a reaction vessel; introducing a flow of a dehumidified gaseous source of methane into the reaction vessel; and irradiating catalytic material in the reaction vessel with microwave energy. The irradiated catalytic material is heated and catalyzes an endothermic reaction of carbon dioxide and methane that produces hydrogen and carbon monoxide. At least a portion of heat required to maintain a temperature within the reaction vessel is supplied by the microwave energy; electric arcing, electric discharge, and plasma generation are suppressed. If desired, a mixture that includes carbon monoxide and hydrogen can flow out of the reaction vessel and be introduced into a second reaction vessel to undergo catalyzed reactions producing multiple-carbon reaction products.
Abstract:
Die Erfindung betrifft ein System (10) zur Bereitstellung von Wasserstoff, umfassend einen Dampfreformer (30) und eine stromabwärts des Dampfreformers (30) angeordnete Brennstoffzelleneinheit (20). Dabei ist stromabwärts des Dampfreformers (30) eine Wasserstoff-Trenneinheit (32) angeordnet.
Abstract:
Procédé de fabrication d'hydrogène à partir de gaz de schiste(ou d'huile de schiste) dans lequel : a) Le gaz (ou huile) de schiste produit est converti en hydrogène par reformage catalytique à la vapeur ou par oxydation partielle par l'oxygène de l'air dans une usine implantée à proximité, b) Le dioxyde de carbone généré avec l'hydrogène est séparé du mélange gazeux et recyclé dans le réservoir de gaz de schiste, il sert à réaliser la fracturation hydraulique. Il peut transiter dans un réservoir tampon. c) Le dioxyde de carbone est finalement séquestré dans le forage créé pour l'exploitation du gaz. d) L'hydrogène est utilisé soit directement dans une centrale électrique implanté sur le site et(ou) injecté dans un réseau de distribution d'hydrogène construit à cette fin. Le prix de revient de l'hydrogène ainsi produit et distribué est de l'ordre de grandeur du prix du gaz naturel importé à contenu énergétique identique et ce en incluant les investissements avec un temps de retour inférieur à quatre ans. L'invention permet ainsi de réduire les rejets de gaz à effet de serre à un niveau plus faible que ceux espérés par la COP21 (Conférence des Nations unies sur le changement climatique).
Abstract:
The invention relates to a process for the preparation of a syngas comprising hydrogen and carbon monoxide comprising the steps of: (a) reacting a preheated methane comprising gas with an oxidising gas to obtain a hot raw syngas comprising carbon monoxide and hydrogen; (b) cooling the hot raw syngas resulting from step (a) to obtain the syngas by indirect heat exchange against water to produce saturated steam; (c) further cooling the raw syngas obtained in step (b) by indirect heat exchange against a methane comprising gas to obtain a cooled raw syngas and the preheated methane comprising gas for use in step (a), wherein: (i) steps (b) and (c) take place in a single cooling device for combined indirect heat exchange against water and against the methane comprising gas; and (ii) the preheated methane comprising gas obtained in step (c) has a temperature between 400 and 650°C. The invention also relates to a cooling device which can be used as the single cooling device in the above process. The cooling device comprises an evaporation section for producing saturated steam, a gas heat exchange section for preheating the methane comprising feed used in step (a) against the raw syngas and a dry steam collection space. This dry steam collection space is separated from the evaporation section where wet saturated steam is formed.
Abstract:
The invention is directed to a process for the preparation of a syngas comprising hydrogen and carbon monoxide from a methane comprising gas, which process comprises the steps of: (a) reacting the methane comprising gas with an oxidising gas in an autothermal reformer to obtain a hot raw syngas comprising carbon monoxide and hydrogen; (b) cooling the hot raw syngas resulting from step (a) to obtain the syngas, wherein step (b) comprises cooling the hot raw syngas by indirect heat exchange against the methane comprising gas used in step (a) and wherein sulphur is added upstream of cooling step (b). The invention also relates to a process for the preparation of hydrocarbon products in which a feed syngas is prepared in the process as described above followed by a desulphurisation treatment and the desulphurised syngas is subsequently converted into hydrocarbon products in a Fischer-Tropsch process.
Abstract:
An apparatus includes a furnace having at least one bayonet reforming tube. The furnace is adapted to receive a gas including a hydrocarbon and at least one of steam and carbon dioxide via the bayonet reforming tube, heat and catalytically react the gas to form syngas at a first temperature, cool the syngas to a second temperature lower than the first temperature, and eject the syngas from the tube. The furnace has a first effluent stream including flue gas and a second effluent stream including syngas. The apparatus also includes a first heat recovery section adapted to transfer heat from the first effluent stream to a first heat load including one of air, water, and steam, and a second heat recovery section adapted to transfer heat from the second effluent stream to a second heat load.
Abstract:
A process and system for a process for releasing hydrogen from a hydrogenated organic carrier. The process including providing a reactor system comprising a first reaction zone and a second reaction zone, the first reaction zone having a first reaction condition and the second reaction zone having a second reaction condition, wherein the first reaction condition and the second reaction condition are different. A ballast system and method are also disclosed. The ballast system includes at least one vessel containing metal hydride capable of selectively storing hydrogen from the hydrogen-containing stream and one or both of selectively providing hydrogen to one or both of a hydrogen load or the dehydrogenation system.
Abstract:
Реактор для парциального окисления углеводородного сырья может быть использован для получения синтез-газа или обогащенного водородом газа в органическом синтезе, нефтехимической и газовой промышленности. Реактор включает внешний корпус со средством вывода продуктов реакции из реактора и с хотя бы одним средством ввода сырья или компонентов сырья в размещенную внутри реактора с зазором с внешним корпусом катализаторную гильзу, заполненную катализатором и включающую средства вывода продуктов из ее нижней части, и отличается тем, что катализаторная гильза снабжена рубашкой, примыкающей хотя бы к части цилиндрической стенки катализаторной гильзы, которая в области примыкания рубашки выполнена со сквозными отверстиями, реактор снабжен средством ввода в рубашку хладоагента, охлаждающего катализаторную гильзу и через отверстия в ее цилиндрической стенке поступающего в катализаторную гильзу. Охлаждение катализаторной гильзы позволяет снизить требования к жаростойкости и коррозионной стойкости материала, из которого изготовлена катализаторная гильза.
Abstract:
One embodiment of a closed loop supercritical carbon dioxide power generation process is provided. This process includes indirectly exchanging heat between a hot gas stream (201) and a warm supercritical carbon dioxide stream (204), expanding the heated supercritical carbon dioxide stream in a turbine (206), indirectly exchanging heat from the expanded supercritical carbon dioxide stream in a high temperature recuperator (208), thereby producing a cooled, expanded supercritical carbon dioxide steam (211), splitting the cooled, expanded supercritical carbon dioxide stream into a first stream (212) and a second stream (213), compressing the first stream in a main compressor (216), and introducing the compressed first stream into the low temperature recuperator (210), and compressing the second stream in a recompressor (218), combining the compressed second stream (219) with the heated first stream (220), and introducing the combined stream (221) into the high temperature recuperator (208), wherein it indirectly exchanges heat with expanded supercritical carbon dioxide stream (207), thereby producing the warm supercritical carbon dioxide stream (204).