Abstract:
We disclose a process of obtaining a highly concentrated and purified nickel (II) nitrate(V) solution from a waste nickel solution containing sulphates and/or chlorides. Multicomponent solutions, containing nickel, are used as a substrate in the described process, and may be of various origin, from solutions from liming primary (ores, concentrates, smelting products) and secondary materials (scrap, recycled materials - batteries, catalytic converters) to waste solutions from technological processes (post-rinsing liquid, post-crystallization bases and others).
Abstract:
A monoalkyl alkylphosphonate represented by the formula (I), (wherein R1 and R2 each represents an alkyl group, with R1 containing 4 carbon atoms and R2 containing 8 carbon atoms) is used as an extractant for separating and recovering nickel and cobalt from Ni- and Co-containing scraps, waste catalysts, etc. according to solvent extraction. The use of this extractant enables one to conduct smooth pumping or the like even when cobalt is contained in a high content since the kinematic viscosity is not increased so much, and to easily obtain highly pure nickel and cobalt due to its extremely high extractive separation coefficient of nickel and cobalt.
Abstract:
The process of the present invention comprises extracting praseodymium, neodymium, and optional cerium from a first aqueous solution comprising chlorides or sulfates of light rare earth into an organic solution; and separating product praseodymium, neodymium, and optional cerium from the organic solution by stripping the praseodymium, neodymium, and optional cerium into a second aqueous solution, followed by precipitation from the second aqueous solution, or by precipitating the praseodymium, neodymium, and optional cerium directly from the organic solution. The process is particularly advantageous because it allows efficient production of a mixture of rare earth suitable for use for permanent magnets that is less expensive and more readily available than the presently used pure neodymium. The extractant is selected from neodecanoic ("versatec") acids, naphthenic acids and organophosphorous compounds including i.a. 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (EHEHPA) and tributylphosphate (TBP).
Abstract:
Using an organophosphonic/organothiophosphonic acid, and optionally, an organophosphinic/organothiophosphinic acid as extractant, efficiency of stripping of lanthanide is improved by varying the concentration of phosphine oxides or esters of phosphorus in the extraction solution. Namely, the stripping efficiency of hydrochloric acid is increased by adding or increasing the concentration of phosphine oxide or ester of phosphorus in the extractant solution; and the stripping efficiency of nitric acid is increased by removing or decreasing the concentration of phosphine oxide or ester of phosphorus in the extractant solution.
Abstract:
The present invention relates to a new solvent extraction process for the extraction of rare earth elements and the separation of a mixture of rare earth elements into the individual rare earth elements. Said process comprises the extraction of at least one rare earth element from an organic phase A into another immiscible organic phase B. The invention further relates to a non-aqueous solvent extraction process wherein at least one rare earth element is extracted from an organic phase A that comprises chloride ions into another immiscible organic phase B, wherein said organic phase B can be a non-polar organic solvent that comprises an extractant such as trialkylphosphine oxide (for instance Cyanex 923).
Abstract:
L'invention se rapporte à l'utilisation de composés de formule générale (I) ci-après dans laquelle: R 1 et R 2 représentent un groupe hydrocarboné, saturé ou insaturé, linéaire ou ramifié, en C 6 à C 12 ; R 3 représente H, un groupe hydrocarboné, saturé ou insaturé, linéaire ou ramifié, en C 1 à C 12 et comprenant éventuellement un ou plusieurs hétéroatomes, ou un groupe hydrocarboné, saturé ou insaturé, monocyclique, en C 3 à C 8 et comprenant éventuellement un ou plusieurs hétéroatomes; tandis que R 4 représente un groupe hydrocarboné, saturé ou insaturé, linéaire ou ramifié, en C 2 à C 8 , ou un groupe aromatique monocyclique; en tant qu'extractants, pour extraire l'uranium(VI) d'une solution aqueuse d'acide sulfurique. Elle se rapporte également à un procédé qui permet de récupérer l'uranium présent dans une solution aqueuse d'acide sulfurique issue de la lixiviation d'un minerai uranifère par l'acide sulfurique et qui met en œuvre lesdits composés en tant qu'extractants. Applications: traitement des minerais uranifères en vue de valoriser l'uranium présent dans ces minerais.
Abstract:
A preprocessing method of an organic extractant, the preprocessed product and the use thereof in rare earth extraction separation. The preprocessing method comprises that an organic extractant is mixed with a rare earth solution and powder or water slurry of an alkali earth metal compound containing Mg and/or Ca to be preextracted, or mixed with a rare earth carbonate slurry to be preextracted, the rare earth metal ion in water phase extracted into the organic phase, and the alkali earth metal compound or the rare earth carbonate dissolved by the exchanged nascent hydrogen ion; and the acidity balance of extraction system is maintained to obtain a loaded organic extractant with the rare earth metal ion, which is used to separate rare earth elements by non-saponified extraction.
Abstract:
Hydrocarbon-soluble aminomethylenephosphonic acid derivatives comprising the structural element of formula (I), where R and R are hydrogen or organic radicals, can be used for the solvent extraction of metal ions from aqueous solutions.