Abstract:
Certain examples present an improved compressed-air energy storage system. The system can include multiple sequential stages, in which accumulators are charged with air, which influences a hydraulic fluid to influence a pump/motor, and vice versa.
Abstract:
The invention relates to systems and methods for rapidly and isothermally expanding gas in a cylinder. The cylinder is used in a staged hydraulic-pneumatic energy conversion system and includes a gas chamber (pneumatic side) and a fluid chamber (hydraulic side) and a piston or other mechanism that separates the gas chamber and fluid chamber while allowing the transfer of force/pressure between each opposing chamber. The gas chamber of the cylinder includes ports that are coupled to a heat transfer subassembly that circulates gas from the pneumatic side and exchanges its heat with a counter flow of ambient temperature fluid from a reservoir or other source.
Abstract:
A hydropneumatic powertrain includes a fluidic driver (34) connected in parallel with first and second liquid tanks (20, 22) connected, respectively, with first and second gas vessels (10, 12). The gas within each gas vessel is in fluid communication with the liquid within the corresponding liquid vessel. A prime mover (30) drives a pump (36) to pump liquid alternately into one of the two liquid tanks connected in parallel with the pump. Switch valving (43, 44) directs the discharge of the pump to either the first liquid tank or the second liquid tank, while the liquid tank not receiving liquid from the pump discharge is discharging its liquid, driven by expansion of gas within the corresponding gas vessel, to drive the fluidic driver which, in turn, drives the drive wheels of the vehicle. Each gas tank is equipped with a heater and a cooler (14, 16) whereby the gas vessel, in the compression portion of the cycle, is cooled while the other gas vessel is heated for expansion of the gas contained therein. Thus, the fluidic driver can be continuously driven by alternating discharges from the two liquid tanks.
Abstract:
A device for fluid power recuperation with reduced heat losses and increased efficiency of fluid power recuperation combined with better manufacturability and possibility of using off-the-shelf gas receivers (bottles). The device comprises at least on hydropneumatic accumulator (1), containing in its shell a fluid port (2) communicating with the fluid reservoir (3) of the accumulator separated from the gas reservoir of the accumulator by a movable separator (4). The gas reservoir (5) of the accumulator communicates via a gas port (6) with at least one gas receiver (9) containing a regenerating heat exchanger (10) made in the form of a metal porous structure. The aggregate volume of the material of the regenerating heat exchanger is in the range of 10 to 50 % of the internal receiver volume and the aggregate area of the heat exchange surfaces of the regenerating heat exchanger reduced to the aggregate internal receiver volume exceeds 2000 cm2 /liter.
Abstract:
Изобретение относится к машиностроению и может быть использовано для рекуперации гидравлической энергии в гидросистемах. Задачей изобретения является создание устройства для рекуперации гидравлической энергии с высокой эффективностью в широком диапазоне длительностей циклов рекуперации. Для решения поставленной задачи предлагается устройство для рекуперации гидравлической энергии со средствами усиления теплообмена, содержащее газохранилище, включающее газовый и жидкостной резервуары переменного объема, отделенные подвижным разделителем с возможностью сжатия газа в газовом резервуаре при нагнетании жидкости в жидкостный резервуар и расширения газа при вытеснении жидкости из указанного жидкостного резервуара, а также средства усиления теплообмена, выполненные с возможностью усиливать отвод тепла от газа при сжатии его в одном газовом резервуаре и усиливать подвод тепла к газу при расширении его в этом газовом резервуаре причем средства усиления теплообмена включают, по меньшей мере, одну газодувку, установленную с возможностью создания вынужденной циркуляции газа по меньшей мере в одном газовом резервуаре.
Abstract:
A hydropneumatic accumulator includes a shell in which gas and fluid ports are connected, respectively, with gas and fluid reservoirs of variable volume separated by a movable separator. The gas reservoir contains a compressible regenerator that fills the gas reservoir so that the separator movement reducing the gas reservoir volume compresses the regenerator. The regenerator is made from leaf elements located transversally to the separator motion direction and dividing the gas reservoir into intercommunicating gas layers of variable depths. The regenerator is preferably made from interconnected elastic metal leaf elements to allow variation of the bending strain degree so that the local bending strains of the leaf elements should not exceed the elastic limits at any position of the separator. The efficiency of fluid power recuperation and durability of the regenerator are increased.
Abstract:
A hydraulic accumulator (1, 11) comprising a pressure vessel (2) having first and second chambers (6, 7) sealingly separated by a movable barrier (8); the first chamber (6) containing a first fluid; the second chamber (7) containing a second fluid; and a cooler (10) arranged in communication with the first chamber (6) and operable to solidify the first fluid in the first chamber (6).
Abstract:
Le moteur-pompe hydraulique (1) à cylindrée fixe ou variable comprend un rotor centrai de moteur-pompe (3) dans loquet et aménagé un cylindre hydraulique (14), ledit rotor (3) étant en contant étanche avec un distributeur d'entrée-sortie (43) relient ledit cylindre (14) avec un bâti de moteur-pompe (2) tandis qu'un piston hydraulique (13) se meut dans ledit cylindre (14) peur pousser au moyen d'un poussoir guide de piston hydraulique (18) d'un bras tangentiel (22) articulé dans ledit rotor central (3) et d'un rouleau antifriction de bras tangentiel (28) sur un rotor périphérique de moteur-pompe (29) synchronisé en rotation aven le rotor central de moteur-pompe (3).
Abstract:
Устройство для рекуперации гидравлической энергии включает, по меньшей мере, один гидропневматический аккумулятор, в корпусе которого выполнен жидкостный порт, сообщающийся с жидкостным резервуаром аккумулятора, отделенным подвижным разделителем от газового резервуара аккумулятора, который через газовый порт сообщается, по меньшей мере, с одним газовым ресивером. В ресивере выполнен регенерирующий теплообменник предпочтительно в виде металлической пористой структуры с суммарной площадью теплообменных поверхностей регенерирующего теплообменника, приведенной к суммарному внутреннему объему ресивера, превышающей 2000 см 2 /литр, предпочтительно, превышающей 10000 см 2 /литр и суммарной теплоемкостью, приведенной к суммарному внутреннему объему газового ресивера, превышающей 40 Дж/К/литр. Газовый резервуар аккумулятора сообщается с газовым портом, по меньшей мере, одного ресивера через газовый канал, снабженный управляемым клапаном, выполненным с возможностью запирания и отпирания этого газового канала. Технический результат - повышение эффективности рекуперации гидравлической энергии.
Abstract:
A device for fluid power recuperation with reduced heat losses and increased efficiency of fluid power recuperation combined with better manufacturability and possibility of using off-the-shelf gas receivers (bottles). The device comprises at least one hydropneumatic accumulator, containing in its shell a fluid port communicating with the fluid reservoir of the accumulator separated from the gas reservoir of the accumulator by a movable separator. The gas reservoir of the accumulator communicates via a gas port with at least one gas receiver containing a regenerating heat exchanger made in the form of a metal porous structure. The aggregate volume of the material of the regenerating heat exchanger is in the range from 10 to 50% of the internal receiver volume and the aggregate area of the heat exchange surfaces of the regenerating heat exchanger reduced to the aggregate internal receiver volume exceeds 2000 cm 2 /liter. At gas compression or expansion the heat exchange between the gas and the regenerating heat exchanger occurs at small average distances between the gas and the heat exchange surfaces and on a large heat exchange area, and, therefore, with smaller temperature differentials, which increases reversibility of the heat exchange processes and recuperation efficiency. The proposed device has the following properties: - reduced heat losses and increased efficiency of fluid power recuperation; - better manufacturability; - possibility of using off-the-shelf gas receivers of any type in the device.