Abstract:
Die Erfindung betrifft eine Vorrichtung in der Getränkeindustrie, insbesondere eine Abfüll- oder Verpackungsmaschine oder ein Greiferzylinder, mit einem Radiallager und/oder einem Axiallager, die jeweils als Luftlager ausgebildet sind.
Abstract:
A container blank handling apparatus (5) for a container blank trimming system (1) for metallic tubular container blanks comprises first and second air bearing body portions having respective arcuate inner surfaces. The first and second body portions are arranged to be moveable with respect to one another between a closed configuration of the apparatus in which the inner surfaces are substantially contiguous so as to form a substantially continuous bearing surface which defines a container blank receiving volume of the apparatus, and an open configuration of the apparatus in which the first and second body portions spaced apart from one another such that the inner surfaces are not contiguous with one another. One of the first and second body portions defines an air delivery pathway therethrough, the air delivery pathway terminating in at least one air delivery aperture in the inner surface of the body portion such that the air delivery pathway is contiguous with the air delivery aperture, the pathway and aperture being arranged for supply of air therethrough into the container blank receiving volume.
Abstract:
A circumferential seal assembly (1) capable of separating a gas into two separate flow paths before communication onto a pair of seal rings (3, 4) is presented. The seal assembly (1) includes an annular seal housing (2), a pair of annular seal rings (3, 4), a rotatable runner (15), and a plurality of groove structures (17). The seal housing (2) is interposed between a pair of low pressure compartments (5, 6). The seal rings (3, 4) are separately disposed within the seal housing (2) and separately disposed around the rotatable runner (15). The groove structures (17) are disposed along an outer circumferential surface (16) of the rotatable runner (15). The gas is communicable onto the groove structures (17). Each groove structure (17) bifurcates the gas before communication onto the seal rings (3, 4). Flow within each groove structure (17) may be further separable before the gas is communicated onto the seal rings (3, 4). The gas forms a thin-film layer (20) between the rotatable runner (15) and each seal ring (3, 4).
Abstract:
An aerostatic bearing comprising a first bearing surface (28); a second bearing surface (32) which is juxtaposed to face the first bearing surface (28) and at least one fluid inlet (38) provided in one of the first and second bearing surface (28), (32). An inlet restriction (40) for restricting a flow rate of compressible fluid to and/or from said fluid inlet (38) and at least one recess (34) are provided in one of the first and second bearing surfaces (28, 32); the or each said recess (34) being in fluid communication with the or each said fluid inlet (38). There is also provided at least one outlet restriction (35) which is in fluid communication with the said at least one recess (34) and which restricts a flow rate at which compressible fluid exits the bearing; and at least one protrusion (42) which is provided on a surface defining at least part of the said at least one recess (34). The / each protrusion (42) lies entirely within said at least one recess (34).
Abstract:
A bearing structure, especially for use in dusty environments, for a rotating shaft (2) is disclosed. The bearing structure has a fixed bearing component having a cylindrical post (4, 20) and a flange enabling the cylindrical post to be fixed in place e.g. to the mixing wall (1) of a mixer unit in which the bearing is installed. A double-walled ring member forms part of the bearing and is mounted on a shaft (2). The inner portion (40) of the double wall is spaced from the outer portion (44) of the double wall by a distance corresponding to the wall thickness of the fixed cylindrical post (4, 20) Within the cylindrical post (4, 20) component, there is an annular chamber (28) into which air is fed under pressure. The interior (20) and exterior (4) walls of the cylindrical post are provided with a plurality of apertures (25, 50) enabling the air fed to the chamber (28) under pressure to flow into the space between the fixed cylindrical post (4, 20) and the rotating member (40, 44) fitted to the shaft (2).
Abstract:
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to, positioning a rotating shaft within a machine via an externally-pressured gas bearing system.
Abstract:
A circumferential seal assembly (1 or 21) capable of separating a gas into two separate flow paths before communication between a rotatable runner (15 or 35) and a pair of seal rings (3, 4 or 23, 24) is presented. The seal assembly (1 or 21) includes an annular seal housing (2 or 22), a pair of annular seal rings (3, 4 or 23, 24), a rotatable runner (15 or 25), and a plurality of groove structures (17, 37, 41 or 55). The seal housing (2 or 22) is interposed between a pair of compartments (5, 6 or 58, 59). The seal rings (3, 4 or 23, 24) are separately disposed within the seal housing (2 or 22) and separately disposed around the rotatable runner (15 or 35). The groove structures (17, 37, 41 or 55) are disposed along an outer annular surface (16 or 36) of the rotatable runner (15 or 35). A gas is communicable onto the groove structures (17, 37, 41 or 55). Each groove structure (17, 37, 41 or 55) includes at least two hydrodynamic grooves (19, 38, 43, or 49) that separate and communicate the gas onto the seal rings (3, 4 or 23, 24). Each groove (19, 38, 43, or 49) includes steps (62) whereby the depth (h) of at least one adjoining step (62) decreases in the direction opposite to rotation with or without the depth (h) of another adjoining steps (62) increasing in the direction opposite to rotation.
Abstract:
Ein Rheometer weist eine Welle auf, die in einem Gaslager drehbar gelagert ist. Das Gaslager weist einen an der Welle angebrachten 1. Lagerkörper (Rotor) und einen 2. Lagerkörper (Stator) auf, der den 1. Lagerkörper (Rotor) mit Abstand unter Bildung eines Lagerspalts umgibt. Der 2. Lagerkörper (Stator) besteht zumindest abschnittsweise aus einem gasdurchlässigen Material und ist derart von einem Gas durchströmt, dass im Lagerspalt ein Gaspolster gebildet ist, durch das der 1. Lagekörper (Rotor) und die Welle berührungslos gelagert sind. Dabei ist vorgesehen, dass der 1. Lagerkörper (Rotor) zumindest in seinen dem 2. Lagerkörper (Stator) zugewandten Bereichen ebenfalls aus einem gasdurchlässigen Material besteht, in das das Gas eindringt und infolge des Staudrucks bzw. Rückstaus des Gases seine oberflächennahe Gasschicht vorzugsweise stehende Gasschicht bildet.
Abstract:
Beschrieben wird eine Lagervorrichtung (39,40), die insbesondere für den Einsatz in gereinigten Atmosphären wie Reinräumen oder Reinluftbereichen in Fertigungsanlagen geeignet ist. Um zu verhindern, daß Abrieb aus der Lagervorrichtung (10,40) in die gereinigte Atmosphäre gelangt, wird erfindungsgemäß vorgeschlagen, die Lagervorrichtung (39,40) mit einem Gasabzug (44,52) zu versehen, der mit einer Unterdruckleitung (42) verbunden ist. Auf diese Weise wird Gas aus der gereinigten Atmosphäre abgezogen und zieht eventuell auftretenden Abrieb mit zu einem Außenbereich.