蓄熱式バーナーの燃焼設備及び燃焼方法
    2.
    发明申请
    蓄熱式バーナーの燃焼設備及び燃焼方法 审中-公开
    燃烧式燃烧器的燃烧设备和燃烧式燃烧器的燃烧方法

    公开(公告)号:WO2011049032A1

    公开(公告)日:2011-04-28

    申请号:PCT/JP2010/068250

    申请日:2010-10-18

    Abstract:  炉体(2)と、炉体に設けられた、蓄熱体(12A,12B)を備える一対のバーナー(11A,11B)と、を有し、前記一対のバーナーを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させ、燃焼状態のバーナー(11A)に所定量の燃焼用ガスを供給して該バーナーの蓄熱体(12B)を冷却すると共に該蓄熱体の放熱により該燃焼用ガスを予熱する蓄熱式バーナーの燃焼設備(1)であって、燃焼状態の前記バーナーに、所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給することで、該バーナーの蓄熱体を冷却するガス供給装置(31)を有する。

    Abstract translation: 一种使用蓄热式燃烧器的燃烧设备(1),其设置有炉体(2)和设置在炉体上并包括蓄热体(12A,12B)的一对燃烧器(11A,11B)。 燃烧设备(1)以这样一种方式配置,即使在燃烧器对中在炉内交替燃烧时,炉内的燃烧废气从非燃烧状态的燃烧器吸入, 燃烧器的积聚体在其中蓄热,同时在燃烧状态下向燃烧器(11A)供给预定量的用于燃烧的气体,以冷却燃烧器的蓄热体(12A)并预热 用于燃烧的气体借助于从热积聚体散发的热量。 燃烧设备(1)还设置有气体供给装置(31),其将用于非燃烧的气体与预定量的用于燃烧的燃烧气体一起在燃烧状态下向燃烧器供应以冷却燃烧器的蓄热体, 用于非燃烧的气体不会对燃烧造成干扰。

    METHOD FOR DETECTING HEAT EXCHANGER TUBE FAILURES AND THEIR LOCATION
    4.
    发明申请
    METHOD FOR DETECTING HEAT EXCHANGER TUBE FAILURES AND THEIR LOCATION 审中-公开
    检测热交换器管故障及其位置的方法

    公开(公告)号:WO2003091881A1

    公开(公告)日:2003-11-06

    申请号:PCT/US2002/037612

    申请日:2002-12-18

    Applicant: LANG, Fred, D.

    Inventor: LANG, Fred, D.

    Abstract: This invention relates to a fossil-fired thermal system such as a power plant (20) or steam generator, and, more particularly, to a method for rapid detection of tube failures (27) and their location within the power plant (20) or steam generator, without need for direct instrumentation, thereby preventing more serious damage and minimizing repair time on the effected heat exchanger (28). This method is applicable to Input/Loss methods of monitoring fossil-fired thermal systems.

    Abstract translation: 技术领域本发明涉及一种化石燃烧的热系统,例如发电厂(20)或蒸汽发生器,更具体地,涉及用于快速检测管道故障(27)及其在发电厂(20)内的位置的方法或 蒸汽发生器,而不需要直接的仪器仪表,从而防止更严重的损坏并最小化受影响的热交换器(28)上的修理时间。 该方法适用于监测化石燃烧热系统的输入/输出方法。

    HEAT EXCHANGE METHOD
    5.
    发明申请
    HEAT EXCHANGE METHOD 审中-公开
    热交换方法

    公开(公告)号:WO02003003A1

    公开(公告)日:2002-01-10

    申请号:PCT/JP2001/005719

    申请日:2001-07-02

    Abstract: A heat exchange method capable of suppressing a loading on a rotating motor and a wear of a seal part and simultaneously performing a recovery of heat from exhaust gas and a reduction in NOx, comprising the steps of detecting the density of Nox in the exhaust gas exhausted from a furnace (10) such as a billet heating furnace and a billet heat treatment furnace having a rotating regenerative heat exchanger installed therein and controlling the speed of a rotor (3) by a controller (14) so as to increase the speed of the rotor (3) of the rotating regenerative heat exchanger when the density of Nox is increased, whereby the speed of the rotor is not required to be increased at all times for the maximum load of the furnace, and the load on the motor and the wear of the seal part can be suppressed.

    Abstract translation: 一种能够抑制旋转电动机上的负载和密封部的磨损,同时进行废气回收和NOx还原的热交换方法,包括以下步骤:检测排出的废气中的Nox的密度 从钢坯加热炉等炉体(10)和安装有转动再生热交换器的钢坯热处理炉,通过控制器(14)控制转子(3)的转速, 当Nox的密度增加时,旋转式再生式热交换器的转子(3),无论何时不需要增加转子的速度,对于炉子的最大负荷,马达的负载和磨损 的密封部分可以被抑制。

    OPERATION OF A FOSSIL-FUELED THERMAL SYSTEM
    10.
    发明申请
    OPERATION OF A FOSSIL-FUELED THERMAL SYSTEM 审中-公开
    石油燃料热系统的运行

    公开(公告)号:WO9949399A9

    公开(公告)日:1999-12-23

    申请号:PCT/US9904265

    申请日:1999-03-22

    Applicant: LANG FRED D

    Inventor: LANG FRED D

    Abstract: The operation of a fossil-fueled thermal system (20) is quantified by obtaining a reference fuel chemistry before on-line operation (270), and thereafter operating on-line. In on-line operation (270), a set of measurable operating parameters is measured, including at least effluent concentrations of oxygen and carbon dioxide, and optionally the concentration of effluent water and the concentration of effluent sulfur oxide. An indicated Air/Fuel ratio is obtained, as are the ambient concentration of oxygen, and air preheater (36) leakage (29) and dilution factors. The fuel ash (Eq. 29) and fuel water are calculated, and the complete As-Fired fuel chemistry is calculated. From the complete As-Fired fuel (Eq. (13)) chemistry, the pertinent systems parameters such as reference fuel heating value, boiler efficiency (32)(Eq. 4(21)), system efficiency, fuel flow rate (Eq. 4(21)), total effluent flow rate (20), individual effluent flow rates (292), and individual emission rates (292) are determined in a fully consistent manner.

    Abstract translation: 化石燃料热系统(20)的运行通过在在线操作(270)之前获得参考燃料化学性质,然后在线操作来量化。 在在线操作(270)中,测量一组可测量的操作参数,包括至少包括氧和二氧化碳的流出物浓度,以及任选的流出水的浓度和流出物硫氧化物的浓度。 获得指示的空气/燃料比,氧气的环境浓度和空气预热器(36)泄漏(29)和稀释因子。 计算燃料灰(方程式29)和燃料水,并计算完整的As-Fired燃料化学。 从完整的As-Fired燃料(方程(13))化学,相关系统参数,如参考燃料加热值,锅炉效率(32)(方程4(21)),系统效率,燃料流量(Eq。 4(21)),总流出物流量(20),个体流出物流量(292)和个体排放率(292)以完全一致的方式确定。

Patent Agency Ranking