Abstract:
A quench system for a refrigeration cycle of a liquefied natural gas (LNG) facility includes at least one compressor for compressing a refrigerant that cools a natural gas stream. Also included is a quench fluid supply structure containing a quench fluid. Further included is a cooler vessel and a quench fluid line extending from the quench fluid supply structure and through the cooler vessel for cooling therein, the quench fluid maintained in a liquid state through the entirety of the quench fluid line. Yet further included is a quench control valve disposed downstream of the cooler vessel to control a flow rate of the quench fluid routed therein. Also included is a refrigerant suction drum located downstream of the quench control valve and configured to receive the quench fluid from the quench fluid line, the refrigerant suction drum in fluid communication with at least one component for cooling.
Abstract:
Systems and methods for removing heavy hydrocarbons are provided. Methods for liquefying a natural gas stream include: cooling at least a portion of the natural gas stream in an upstream refrigeration cycle of a liquefaction process to produce a cooled natural gas stream; separating via a first distillation column the cooled natural gas stream into a first top fraction and a first bottom fraction, wherein the first fraction does not freeze in a subsequent downstream step of the liquefaction process; separating via a second distillation column the first bottom fraction into a second top fraction and a second bottom fraction, wherein the second top fraction at least a portion of a reflux stream.
Abstract:
A system for liquefying natural gas that includes a process and apparatus for enhancing the performance of one or more gas turbines. Gas turbine power output can be stabilized or even enhanced using the interstage cooling system configured according to one or more embodiments of the present invention. In one embodiment, partially compressed air from a lower compression stage of a gas turbine is cooled via indirect heat exchange with a primary coolant before being returned to a higher compression stage of the same gas turbine. Optionally, the interstage cooling system can employ one or more secondary coolants to remove the rejected heat from the primary coolant system.
Abstract:
An LNG facility employing an optimized heavies removal system. The heavies removal system can comprise at least one distillation column and at least two separate heat exchangers. Feed and/or compressor discharge streams can be used to provide heat duty to the heat exchangers in a thermally efficient manner to facilitate the removal of heavy components from an overall LNG facility.
Abstract:
A liquefied natural gas (LNG) facility that employs a system to remove incondensable material from one or more refrigeration cycles within the facility. One or more embodiments of the present invention can be advantageously employed in an open-loop refrigeration cycle to remove at least a portion of one or more high vapor pressure components that have accumulated in the refrigerant cycle over time. In addition, several embodiments can be advantageously employed to stabilize facility operation in the event of drastic changes to the concentration of the natural gas feed stream introduced into the facility.
Abstract:
A single LNG facility, and operating method therefore, capable of efficiently producing LNG products that meet the varying specifications of different LNG markets A single LNG facility comprising varying high heating value (HHV)1 cooling a spiking fluid with a higher HHV than the LNG and combining at least a portion of the initial LNG and at least a portion of the spiking fluid.
Abstract:
LNG facility employing one or more vertical core-in-kettle heat exchangers to cool natural gas via indirect heat exchange with a refrigerant. The vertical core-in-kettle heat exchangers save plot space and can be use to reduce the size of cold boxes employed in the LNG facility. In addition, vertical core-in-kettle heat exchangers can exhibit enhanced heat transfer efficiency due to improved refrigerant access to the core, improved refrigerant circulation around the core, and/or improved vapor/liquid disengagement above the core.
Abstract:
A process and apparatus for the liquefaction of natural gas including an improved heavy hydrocarbon removal column with overhead condensing and refluxing. Particularly, a methane-rich stream exiting a propane refrigerant cycle is delivered to a heavies removal column, and the heavies depleted vapor from the column is at least partially condensed and the liquid portion provided as reflux to the heavies removal column.
Abstract:
A semi-closed loop system for producing liquefied natural gas (LNG) that combines certain advantages of closed-loop systems with certain advantages of open-loop systems to provide a more efficient and effective hybrid system. In the semi-closed loop system, the final methane refrigeration cycle provides significant cooling of the natural gas stream via indirect heat transfer, as opposed to expansion-type cooling. A minor portion of the LNG product from the methane refrigeration cycle is used as make-up refrigerant in the methane refrigeration cycle. A pressurized portion of the refrigerant from the methane refrigeration cycle is employed as fuel gas. Excess refrigerant from the methane refrigeration cycle can be recombined with the processed natural gas stream, rather than flared.