Abstract:
A cold box particularly for use in a LNG cryogenic processes in which a plurality of cores of heat exchanger units are mounted within a housing. Headers are positioned in the housing with feed lines connecting the headers to manifolds on the cores. The cores and headers are arranged such that no header is positioned to block the removal of any core through the front and/or back of the housing. A method of making the cold box is also disclosed.
Abstract:
A liquefied natural gas production plant for producing a product stream of liquefied natural gas installed at a production location and a process for producing liquefied natural gas is described. The production plant includes a plurality of modules and an air-cooled heat exchanger bank designed for the installed production train, the heat exchanger bank including: a first row of air-cooled heat exchanger bays, and, an adjacent parallel second row of air-cooled heat exchanger bays, A first sub-section of the first row of heat exchanger bays is arranged at an elevated level vertically offset from and towards a first edge of a first module base to form a covered section of the first module base, the first module base being designed and sized to include an uncovered section for mounting a selected piece of process equipment. A first sub-section of the second row of heat exchanger bays arranged at an elevated level vertically offset from and towards a first edge of a second module base to provide a covered section of the second module base. The first edge of the second module base positioned at the production location towards the first edge of the first module base The first module includes the first sub-section of the first row of heat exchanger bays without including a sub-Section of the second row of heat exchanger bays and the second module includes the first sub-section of the second row of heat exchanger hays without including a sub-section of the first row of heat exchanger bays.
Abstract:
This disclosure teaches systems and methods for distributed production of liquefied natural gas by utilizing refrigeration to reach the condensation of natural gas, removing of compression heat loads, sensible heat loads, and latent heat at ambient temperatures utilizes the Stirling cycle, both refrigeration and thermal heating processes, for enabling cryogenic refrigeration and the portable production of LNG. Generally, the natural gas may be supplied from existing or nearby pipelines and the LNG production system itself may be powered by electric motors or internal combustion engines. The refrigeration machine / LNG production system may be installed at, within or nearby to existing or new construction gas stations for refueling of all classes of motorized vehicles. Additional embodiments include the refrigeration machine installed into standard over-seas containers for LNG import or export, as well as any other portable platform for distributed LNG production.
Abstract:
A liquefied natural gas production facility and a method of designing and constructing a liquefied natural gas production facility are described. The facility comprises a plurality of space-apart modules for installation at a production location to form a production train having a major axis and a minor axis, each module having a module base for mounting a plurality of plant equipment associated with a selected function assigned to said module, the module base having a major axis and a minor axis; and, a plurality of heat exchangers arranged to run parallel to the major axis of the production train to form a heat exchanger bank having a major axis and a minor axis, wherein the major axis of the bank is parallel to the major axis of the train; wherein a subset of the plurality of heat exchangers is arranged on a first level vertically offset from the base of at least one module to form a partially covered module, and wherein the major axis of the partially covered module is arranged to lie perpendicular to the major axis of the train when the partially covered module is installed at the production location.
Abstract:
An offshore apparatus for liquefying natural gas comprises a support structure which is either floatable or is otherwise adapted to be disposed in an offshore location at least partially above sea level, and natural gas liquefaction means disposed on or in the support structure. The natural gas liquefaction means comprises a series of heat exchangers (150, 151, 153) for cooling the natural gas in countercurrent heat exchange relationship with a refrigerant, compression means (169, 170) for compressing the refrigerant, and expansion means (160, 161) for isentropically expanding at least two separate streams (126, 128) of the compressed refrigerant, wherein said expanded streams of refrigerant communicate with a cool end of a respective one of the heat exchangers (150, 151, 153).
Abstract:
A system for the regeneration of nitrogen energy within a closed loop cryogenic system is described. A liquid nitrogen storage is provided in fluid communication with a first flow line. A pump pumps liquid nitrogen from the liquid nitrogen storage to the first flow line. At least one cryogenic cooling loop is provided in fluid communication with the first flow line. The cryogenic cooling loop has an nitrogen intake and a nitrogen outlet with the nitrogen outlet being positioned downstream of the nitrogen intake. The cryogenic cooling loop has a heat exchanger between the nitrogen intake and the nitrogen outlet. A turbo expander used for re-cooling the nitrogen flowing through the first flow line and the at least one cryogenic cooling loop has an inlet and an outlet. The inlet is provided in fluid communication with the first flow line. The turbo expander is connected to a power source. A second flow line connects the outlet of the turbo expander to the liquid nitrogen storage.
Abstract:
The present invention relates to the use of a refrigerant composition comprising neon and hydrogen in a method for liquefying gaseous substances such as hydrogen or helium.