Abstract:
The present invention refers to a method and an equipment for curing and drying self-reducing agglomerates containing cement as a binder in the presence of saturated vapor at a temperature from about 70 to about 110°C and under atmospheric pressure. The treatment is performed in one single equipment. The self-reducing agglomerates are comprised of mixtures of fines of iron ore and/or industrial residue containing iron oxides and/or metallic iron, fines of carbonaceous materials such as mineral coal, charcoal, green petroleum coke and similar fines fluxing material such as steel plant slag and blast furnace slag, limestone, lime and similar materials, cement as a binder and fluxing agent, and humidity between 7 and 12%, produced in pellet-making units and/or briquette-making units and thereafter treated using one single piece of equipment, involving the steps of predrying with heated gasses (2), curing with saturated vapor (3) and drying with heated gasses (4) performed continuously and sequentially, controlling the discharge velocity (5) in order to allow the time of permanence of the agglomerate within the equipment to be from about 4 to about 12 hours. The cured and dried agglomerate may be processed in an adequate reducing/melting equipment to provide metals and metallic alloys.
Abstract:
Self-reducing agglomerates are provided for use in the production of metal. The agglomerates comprise a mixture of iron oxide containing particles and particles of a reducing agent bonded by use of a pre-gel. The agglomerates are produced by a method and apparatus that provides for mixing and curing thereof. The agglomerates may then be used for reduction thereof for the production of iron.
Abstract:
[Problem] To propose: a blast furnace operation method in which both the cooling power and combustion quality are improved without increasing the lance outer diameter, making the method effective in improving productivity and reducing the unit consumption of the reducing agent; and a structure of a lance used to carry out this method. [Solution] A blast furnace operation method in which at least a solid reducing agent and a combustion-supporting gas are blown through a tuyere into the furnace using lances inserted into a blowpipe, wherein: bundle-type lances obtained by bundling a plurality of blowing tubes are used; and when the solid reducing agent is blown alone, the solid reducing agent and the combustion-supporting gas are simultaneously blown, or the solid reducing agent, the combustion-supporting gas, and a gaseous reducing agent are simultaneously blown into the blast furnace through a solid reducing agent blowing tube, a combustion-supporting gas blowing tube, and a gaseous reducing agent blowing tube of the bundle-type lances, two or more of the bundle-type lances are inserted into the blowpipe and the respective tips are brought near each other, and blowing is performed so that the respective blowout flows interfere with each other within the blowpipe.
Abstract:
For burning electrode blanks, the latter pass in coaxial succeeding manner through a burning section and hot gas flows round them. This hot gas flow is segmentally regulated along the burning section. From the actual and desired values of this flow regulation is derived a control quantity for the fuel supply, which is used for heating with fresh hot gas the hot gas conveyed in the circuit, accompanied by the simultaneous burning of its charge of combustible constituents, this taking place stoichiometrically in such a way that no harmful oxygen is present in the fresh hot gas.
Abstract:
A process and apparatus for direct smelting metalliferous material is disclosed. The invention concentrates injection of solid feed materials comprising metalliferous material and carbonaceous material into a direct smelting vessel during the course of the process into a relatively small region within a metal layer in a molten bath in the vessel in order to generate a substantial upward movement of molten material and gas from the metal layer into a region in the vessel that is above the molten bath. In particular, the invention injects the solid feed materials with sufficient momentum and/or velocity via an opposed pair of lances that are oriented within the vessel and arranged to form overlapping plumes of injected material in the molten bath.
Abstract:
Self-reducing agglomerates are provided for use in the production of metal. The agglomerates comprise a mixture of iron oxide containing particles and particles of a reducing agent bonded by use of a pre-gel. The agglomerates are produced by a method and apparatus that provides for mixing and curing thereof. The agglomerates may then be used for reduction thereof for the production of iron.