Abstract:
Turbine engine rotor (24) corresponding thru-bolts (26) and disc cavities (30) are inspected with a camera inspection system that includes one or both of a thru-bolt male threads inspection apparatus (50) and a rotor disc cavity inspection apparatus (40). The disc cavity inspection scope apparatus is insertable in one or more of the desired rotor disc cavities (30) and orients an attached inspection camera field of view generally transverse to the circumferential wall in the rotor disc that defines the cavity. Preferably inspection scope apparatus insertion into the disc cavities is performed with a motion control system that monitors spatial position of the camera field of view relative to the recess circumferential wall. The plural camera cavity circumferential wall images are desirably combined to form a composite image of a desired portion of or the entire disc cavity circumferential surface, which aids their inspection evaluation and provides an archived composite image of the surface.
Abstract:
An optical probe (10) including one or more optical elements (32), and an inner tube (30) to house the optical elements. The inner tube may be made up of at least two cooperating inner tube sections (34, 36) separable from one another along a longitudinal axis of the inner tube.
Abstract:
Die Erfindung betrifft eine hermetische Durchführung (10) für ein Videoendoskop zur Durchführung elektrischer Leitungen (22, 23, 36, 46, 56) von einem ersten Teilraum in einen zweiten Teilraum, insbesondere aus einem distal angeordneten hermetisch abgedichteten Gehäuse in einen Endoskopschaft, umfassend eine Trennwand (12) zur hermetischen Abdichtung der beiden Teilräume, ein Verfahren zur Herstellung einer hermetischen Durchführung (10), eine Leiterplatte (20, 30, 31, 40, 50) und ein chirurgisches Instrument. Erfindungsgemäß ist eine in einer Dünnschichttechnik hergestellte, insbesondere flexible, Leiterplatte (20, 30, 31, 40, 50), in der die elektrischen Leitungen (22, 23, 36, 46, 56) in einen Kunststoff (33) eingebettet sind, mit einer Kunststoffmasse (24) in eine Gießform eingegossen und nachvernetzt, wobei die Kunststoffmasse (24) die Trennwand (12) der hermetischen Durchführung (10) ist.
Abstract:
An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550nm to 20µm, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1µm wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10µm wavelength).
Abstract:
Es wird eine Inspektionsvorrichtung (1) offenbart, welche einen distalen Bereich (2), einen proximalen Bereich (3) und einen zwischen dem distalen Bereich (2) und dem proximalen Bereich (3) angeordneten flexiblen Bereich (4) umfasst. Dabei umfasst der flexible Bereich (4) eine Anzahl zueinander beweglich angeordneter Segmente (5). Mindestens ein externes Führungselement (6) ist außerhalb des flexiblen Bereiches (4) zwischen dem distalen Bereich (2) und dem proximalen Bereich (3) so angeordnet, dass der distale Bereich (2) mit Hilfe des externen Führungselements (6) in Bezug auf den proximalen Bereich (3) bewegbar ist.
Abstract:
An imaging system for on-line imaging of a component in a gas turbine engine. The imaging system includes a flexible imaging bundle formed by a plurality of optical elements. An imaging end of the optical elements images a component in a hot gas path of the engine during operation of the engine and a viewing end provides an image of the component at a location displaced from the hot gas path. The optical elements are surrounded by a flexible metal sheath that is permeable to air to provide cooling air the optical elements from an air source surrounding the flexible imaging bundle
Abstract:
A device includes a first member including a first material, an optical window, and a second member including a second material dissimilar to the first material, wherein the second member is bonded to the optical window and explosion welded to the first member. An implementation of the device includes an autoclavable medical device including an aluminum body, a stainless steel bridge explosion welded to the body, and a sapphire window bonded to the bridge. A method of manufacturing the device is also disclosed.
Abstract:
A device includes a first member including a first material, an optical window, and a second member including a second material dissimilar to the first material, wherein the second member is bonded to the optical window and explosion welded to the first member. An implementation of the device includes an autoclavable medical device including an aluminum body, a stainless steel bridge explosion welded to the body, and a sapphire window bonded to the bridge. A method of manufacturing the device is also disclosed.