Abstract:
Die Erfindung betrifft ein System zur hochgenauen Uhrzeitsynchronisation von Netzwerkteilnehmern eines Netzwerkes auf Satellitenbasis. Um eine im Vergleich zu aus dem Stand der Technik bekannten Lösungen einfachere und robustere hochgenaue Uhrzeitsynchronisation von Netzwerkteilnehmern anzugeben, wird ein System vorgeschlagen, aufweisend zumindest eine Kopfstation mit einer Satellitenantenne und einer Empfangseinheit zum Empfang eines eine Uhrzeitinformation aufweisenden Satellitensignals, eine Stationsuhr mit einem Netzwerkanschluss zur Synchronisation der Netzwerkteilnehmer mittels eines Echtzeit-Netzwerkprotokolls, eine in der Kopfstation oder der Stationsuhr angeordneten Elektronik zur Gewinnung einer Uhrzeit aus dem Satellitensignal sowie eine bidirektionale Kommunikationsinfrastruktur zwischen Kopfstation und Stationsuhr.
Abstract:
Provided is a method of performing time synchronization using a navigation device. The method includes: (a) performing time synchronization between a GPS satellite and a navigation device by receiving GPS signals by a navigation device from at least one GPS satellite;; (b) establishing an interface between the navigation device and a time-using device; (c) setting conditions for transmitting time information to the navigation device; and (d) performing time synchronization between the navigation device and the time-using device by transmission of time information from the navigation device to the time-using device.
Abstract:
Ein Verfahren zum Korrigieren einer ersten Uhrzeit eines Kraftfahrzeugs (100) umfasst: Bereitstellen eines Werts (101) der ersten Uhrzeit von einem ersten Zeitgeber (102), Empfangen eines Werts (103) einer zweiten Uhrzeit von einem zweiten Zeitgeber (104), Ermitteln einer Differenz zwischen dem Wert (101) der ersten Uhrzeit und dem Wert (103) der zweiten Uhrzeit, Vergleichen der ermittelten Differenz mit einem vorgegebenen Wert (105), Setzen eines aktuellen Werts der ersten Uhrzeit auf den Wert (103) der zweiten Uhrzeit, wenn die ermittelte Differenz kleiner als der vorgegebene Wert (105) ist.
Abstract:
A local clock network (10, 12) has a reference control unit (16a, 16b) having a reference clock, processing unit and data memory. Coupled to each reference clock (16a, 16b) by a fibre optic cable (20a 1 -20a n and 20b 1 -20b n ) are a plurality of remote stations (22a 1 -22a n and 22b 1 -22b n ), typically clients desiring an accurate clock signal which is precisely and reliably synchronised with the local clock signal of other users within the network or interconnected networks. The user units (22a 1 -22a n and 22b 1 -22b n ) are in the form of a clock indicator unit which provides a clock signal for use by the internal client systems. Each network (10, 12) is a closed loop system between the associated reference station (16a, 16b) and the associated remote user stations (22a, 22b). Each reference station (16a, 16b) determines the latency associated with each remote user station (22a 1 -22a n and 22b 1 -22b n ) and generates an offset appropriate for each user station (22a 1 -22a n and 22b 1 -22b n ). Each reference station (16a, 16b) then generates a specific clock signal for each remote user station (22a 1 -22a n and 22b 1 -22b n ) on the basis of its reference clock signal adjusted by the appropriate user station offset. The local user time clocks are thus precisely synchronised to one another. A plurality of separate networks (10, 12) are synchronised by reference to their local Coordinated Universal Time (UTC) clocks, with one reference station acting as a master station.
Abstract:
A primary device for a synchronous event system. In one construction, the primary device includes a solar panel operable to convert light into electricity; a receiver operable to receive a global positioning system time signal; a processor coupled to the receiver and operable to process the global positioning system time signal to produce a processed time component; a internal clock coupled to the processor and operable to store the processed time component and to increment relative to the processed time component thereafter to produce an internal time; and a transmitter coupled to the processor and operable to transmit the internal time to a secondary device for wireless reception by the secondary device and synchronization of the secondary device relative to the primary device.
Abstract:
A primary device for a synchronous event system. In one construction, the primary device includes a solar panel operable to convert light into electricity; a receiver operable to receive a global positioning system time signal; a processor coupled to the receiver and operable to process the global positioning system time signal to produce a processed time component; a internal clock coupled to the processor and operable to store the processed time component and to increment relative to the processed time component thereafter to produce an internal time; and a transmitter coupled to the processor and operable to transmit the internal time to a secondary device for wireless reception by the secondary device and synchronization of the secondary device relative to the primary device.