Abstract:
Disclosed herein are a radiographic imaging apparatus and a method of controlling the radiographic imaging apparatus. The radiographic imaging apparatus may include an imager configured to image a subject to obtain image data; a real-time processor configured to communicate with the imager and configured to obtain a real-time processing authority and perform real-time image processing on the image data; and a non-real-time processor configured to communicate with the imager and configured to perform non-real-time image processing on the image data, and in response to a failure occurring in the real-time processor, obtain the real-time processing authority and perform the real-time image processing on the image data.
Abstract:
An approach is provided for internet protocol (IP) address failover. An application on a primary site is assigned a private IP address. This private IP address is accessible within a local network. This private IP address is mapped to a public IP address, which is accessible to users outside the local network. The application is then replicated to a backup site with the same private IP address used to access it on the primary site. In case of a disaster recover event on the primary site, the replicated application can be accessed on the backup site by way of the public IP address.
Abstract:
Techniques for generating a system model for use by an availability management function (AMF) are described. Inputs are received, processed and mapped into outputs which are further processed into a configuration file in an Information Model Management (IMM) Service external Markup Language (XML) format which can be used as a system model by an AMF.
Abstract:
A method effectively preventing a requesting node from unfencing and mounting a file system subsequent to a failure in a cluster file system having a plurality of active nodes. The method comprising first upgrading one active node in the cluster to function as a cluster manager node. The cluster manager is in communication with all nodes. The cluster manager is assigned manager responsibilities, in part, comprising first receiving an active status request from the node requesting to mount a file system. The cluster manager first queries the quorum nodes to determine whether each node considers the cluster manager to still have cluster management responsibilities for the file system. If a majority of quorum nodes consider the cluster manager to still have cluster management responsibilities for the file system then the cluster manager responds to the requesting node's active status request. Thereafter, the requesting node proceeds with mounting the file system.
Abstract:
Methods and apparatus for providing a comprehensive decision support system to include predictions, recommendations with consequences and optimal follow-up actions in specific situations are described. Data is obtained from multiple disparate data sources, depending on the information deemed necessary for the situation being modeled. Some embodiments perform complex systems modeling including performing massive correlative analyses of the data obtained from the multiple disparate data sources with current situational data obtained regarding the situation for which the decision support process is being utilized. The decision support system provides a prediction or predictions and a recommendation or a choice of recommendations based on the correlative analysis and/or other analyses. In some embodiments the decision support system provides possible consequences that could result from a recommendation. In other embodiments the decision support system provides a list of tasks for acting upon a recommendation. Also described are methods and apparatus for developing application specific decision support models. The decision support model development process may include identifying multiple disparate data sources for retrieval of related information, selection of classification variables to be retrieved from the data sources, assignment of weights to each classification variable, selecting and/or defining rules, and selecting and/or defining analysis functions.
Abstract:
Methods and apparatus for providing a comprehensive decision support system to include predictions, recommendations with consequences and optimal follow-up actions in specific situations are described. Data is obtained from multiple disparate data sources, depending on the information deemed necessary for the situation being modeled. Some embodiments perform complex systems modeling including performing massive correlative analyses of the data obtained from the multiple disparate data sources with current situational data obtained regarding the situation for which the decision support process is being utilized. The decision support system provides a prediction or predictions and a recommendation or a choice of recommendations based on the correlative analysis and/or other analyses. In some embodiments the decision support system provides possible consequences that could result from a recommendation. In other embodiments the decision support system provides a list of tasks for acting upon a recommendation. Also described are methods and apparatus for developing application specific decision support models. The decision support model development process may include identifying multiple disparate data sources for retrieval of related information, selection of classification variables to be retrieved from the data sources, assignment of weights to each classification variable, selecting and/or defining rules, and selecting and/or defining analysis functions.