Abstract:
A head (300) for a disc drive (100) and a method of making the head (300). The head (300) includes a substrate (201) with a trailing side (209) and a first air bearing surface (222) that generates lift. A magnetic transducer (302) is deposited along the trailing side (209) and has a pole tip (220) that is spaced apart from a disc by a pole-to-disc spacing (304). The head (300) also includes a deposit (301) along the trailing side (209). The deposit (301) includes a second air bearing surface that changes position relative to the first air bearing surface (222) as temperature increases.
Abstract:
An apparatus is provided that includes a waveguide adjacent an air bearing surface, a near-field transducer comprising a peg having a side orthogonal to the air bearing surface and a write pole adjacent to the waveguide. The write pole includes a first portion extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface, and a second portion in contact with the first portion comprising a side that extends towards and orthogonally contacts the air bearing surface. The second portion or the write pole defines a gap between the side of the peg orthogonal to the air bearing surface and the side of the second portion of the write pole that extends towards and orthogonally contacts the air bearing surface. A method of making a magnetic recording head that includes the provided apparatus is also disclosed.
Abstract:
A method and apparatus for dissipating heat generated in a sensor element of a vertical magnetoresistive recording head or flux guide magnetoresistive recording head having a recess formed in the lower and/or upper magnetic shields for enhancing efficiency during reading data from a magnetic medium. Heat is dissipated through a non-magnetic metal filler layer (10, 12) formed in the shield recesses (140) between an upper (2) or lower (6) metal shield and a sensor element (4) comprising a magnetoresistive head structure. The metal filler (10, 12) must be non-magnetic, must avoid an electrical short between the sensor element and the upper (2) or lower (6) magnetic shield, and must be compatible with the adjacent shield in terms of adhesion thereto and the thermal expansion coefficient thereof. An insulator layer (11, 20) comprising an electrical insulator is formed between the sensor element (4) and the metal filler (10, 12) to insure electrical insulation. The metal filler (10, 12) acts as a thermal path from the sensor element (4) to the metal shields (2, 6).
Abstract:
A method and apparatus for dissipating heat generated in a sensor element of a vertical magnetoresistive recording head or flux guide magnetoresistive recording head having a recess formed in the lower and/or upper magnetic shields for enhancing efficiency during reading data from a magnetic medium. Heat is dissipated through a non-magnetic metal filler layer (10, 12) formed in the shield recesses (140) between an upper (2) or lower (6) metal shield and a sensor element (4) comprising a magnetoresistive head structure. The metal filler (10, 12) must be non-magnetic, must avoid an electrical short between the sensor element and the upper (2) or lower (6) magnetic shield, and must be compatible with the adjacent shield in terms of adhesion thereto and the thermal expansion coefficient thereof. An insulator layer (11, 20) comprising an electrical insulator is formed between the sensor element (4) and the metal filler (10, 12) to insure electrical insulation. The metal filler (10, 12) acts as a thermal path from the sensor element (4) to the metal shields (2, 6).