摘要:
Methods for calibrating antenna oscillators are provided including initiating a clock offset process from a primary antenna with a remote antenna within a radio frequency (RF) range of the primary antenna to determine a clock offset between the primary antenna and the remote antenna; calculating a temperature difference between a primary temperature of the primary antenna and a temperature of the remote antenna; and instructing the remote antenna to adjust a clock frequency of the remote antenna based on the determined clock offset and the calculated temperature.
摘要:
An apparatus has an array of antennae. Each antenna in the array has a tile circuit including a frequency conversion circuit to generate from an incoming reference signal a local oscillator carrier signal operative as an outgoing reference signal for an adjacent tile circuit. A mixer receives the local oscillator carrier signal and combines it with an antenna signal to produce a frequency converted antenna signal. A matrix of phase shifters and variable gain elements produces a set of frequency converted and phase rotated antenna signals. Analog summers combine the frequency converted and phase rotated antenna signals with user input signals from the adjacent tile circuit for distributed analog beam forming of multiple streams. The user input signals correspond to distinct users tracked by the array of antennae.
摘要:
An initial phase of each output signal generated by a plurality of radio frequency (RF) front-end circuits is determined by mixing an input signal with a mixing signal in a mixer of the corresponding RF front-end circuit. To that end, a time difference for each of the plurality of RF front-end circuits is determined by measuring a time difference between a reference signal (common to all of the RF front-end circuits) and the mixing signal of each RF front-end circuit. The initial phase for each output signal is then determined based on the measured time difference for the corresponding RF front-end circuit. Determining the initial phase in this manner accounts for any uncertainty of the phase when the RF front-end circuits are activated, enabling the phase of the corresponding antenna element to be accurately controlled.
摘要:
An antenna comprising a reflector (20) connected to a motor drive (30), a primary radiator (30) for transceiving a radio beam at an operating frequency impinged on the reflector (20) is disclosed. A coarse alignment system comprising a motor drive is connected to the reflector (20) for driving at least one of the rotation and the tilting of the reflector. The coarse alignment system (70; 270; 370; 470) comprising an auxiliary antenna (50) connected to the control device (60) for communicating with a further auxiliary antenna (10b), at a second frequency different from the operating frequency. A fine alignment system is also present for electronic adjustment of the radio beam. A control device controls the coarse alignment system and the fine alignment system.
摘要:
Embodiments of the present invention provide a passive radio frequency identification (RFID) moisture sensor. This moisture sensor includes one or more antenna structures having a tail. The tail is operable to transport a disturbance such as, but not limited to fluid or moisture from a monitored location wherein the antenna has an impedance and varies with proximity to the disturbance. An integrated circuit couples to the antenna structure. This IC includes a power harvesting module operable to energize the integrated circuit, an impedance-matching engine coupled to the antenna, a memory module, and a wireless communication module. The impedance-matching engine may vary a reactive component to reduce a mismatch between the antenna impedance and the IC and produce an impedance value (sensor code) representative of the reactive component impedance. The memory module stores the impedance value (sensor code) until the wireless communication module communicates with an RFID reader and sends the impedance value/sensor code to the RFID reader. The RFID reader may then determine an environmental condition such as the presence of moisture or fluids at the tail of the RFID sensor. This sensor may deploy several antenna and/or tails sensitive to unique disturbances. These tails may be used to monitor different locations as well as different types of fluids. In one particular embodiment, the disturbance is a fluid or moisture within the gutter of a vehicle body.
摘要:
The present disclosure relates to a pre 5G or 5G communication system to be provided for supporting higher data rates beyond 4G communication system such as LTE. A method for operating a large scale antenna array in a wireless communication system includes receiving one or more signals. The one or more signals include information for beamforming to a plurality of user equipments (UEs) using a full-dimensional multiple-input multiple-output (FD-MIMO) beamforming scheme. The FD-MIMO beamforming scheme includes same time resources and same frequency resources that are co-scheduled to the plurality of UEs. The method further includes identifying a time delay of the one or more signals associated with one or more antenna arrays that are distributed in the large scale antenna array and performing a multi-user (MU) joint beamforming on the one or more signals to one or more UEs.
摘要:
La présente invention concerne un procédé de détection (PR) d'un identifiant (Id) pour le démarrage d'un véhicule automobile (V), ledit véhicule automobile comprenant une première antenne (A1) et ledit identifiant (Id) comprenant une deuxième antenne (A2). Le procédé (PR) se caractérise en ce qu'il comporte : - l'émission par ladite première antenne (A1) d'un premier signal (Sg1) Bluetooth Low Energy TM vers ledit identifiant (Id) à une puissance nominale (P1); - la mesure de la puissance (P1') dudit signal reçu correspondant (Sg1') par la deuxième antenne (A2) dudit identifiant (Id); - la comparaison de ladite puissance mesurée (P1') avec une puissance seuil (Ps), ladite puissance seuil (Ps) correspondant à une distance seuil (ds) de ladite première antenne (A1) qui est inférieure au rayon (r1) d'un cercle (C1) inscrit dans l'habitacle (H) du véhicule automobile (V), ledit cercle (C1) étant centré sur ladite première antenne (A1); - l'autorisation du démarrage du véhicule automobile (V) si la puissance mesurée (P1') est supérieure ou égale à ladite puissance seuil (Ps).