Abstract:
Method and system embodiments for providing a cloud-based multi-function firewall are described. A method includes retrieving device information associated with a network-enabled device. The device information is transmitted to a secure cloud for configuring a virtual private network (VPN) connection between the secure cloud and the network-enabled device. Cloud information specifying a cloud server in the secure cloud is received from the secure cloud. The secure cloud generates the cloud information based on the device information. Domain name service and routing functions are updated to forward network requests to the cloud server specified in the cloud information. The VPN connection to the secure cloud is established based on the cloud information such that network traffic to and from the network-enabled device is routed through the VPN connection to the cloud-based multi-function firewall implemented on the cloud server.
Abstract:
For a network that includes host machines for providing computing and networking resources and a VPN gateway for providing external access to those resources, a novel method that distributes encryption keys to the hosts to encrypt / decrypt the complete payload originating / terminating at those hosts is described. These encryption keys are created or obtained by the VPN gateway based on network security negotiations with the external networks / devices. These negotiated keys are then distributed to the hosts via control plane of the network. In some embodiments, this creates a complete distributed mesh framework for processing crypto payloads.
Abstract:
Approaches, techniques, and mechanisms are disclosed for implementing a distributed firewall. In an embodiment, many different computer assets police incoming messages based on local policy data. This local policy data is synchronized with global policy data. The global policy data is generated by one or more separate analyzers. Each analyzer has access to message logs, or information derived therefrom, for groups of computer assets, and is thus able to generate policies based on intelligence from an entire group as opposed to an isolated asset. Among other effects, some of the approaches, techniques, and mechanisms may be effective even in computing environments with limited supervision over the attack surface, and/or computing environments in which assets may need to make independent decisions with respect to how incoming messages should be handled, on account of latency and/or unreliability in connections to other system components.
Abstract:
In one embodiment, a method includes detecting interception of data sent by the computing device to a first network resource through a communication network. The first network resource corresponds to a particular domain of the communication network. The method also includes determining whether the communication network is administered by the particular domain; and automatically generating a request to access the communication network that identifies a second network resource based at least in part on the determination. The second network resource is configured to authenticate a user to the particular domain of the communication network. The method also includes sending the request to the second network resource to access the communication network.
Abstract:
The disclosure herein describes an edge device of a network for distributed policy enforcement. During operation, the edge device receives an initial packet for an outgoing traffic flow, and identifies a policy being triggered by the initial packet. The edge device performs a reverse lookup to identify at least an intermediate node that is previously traversed by the initial packet and traffic parameters associated with the initial packet at the identified intermediate node. The edge device translates the policy based on the traffic parameters at the intermediate node, and forwards the translated policy to the intermediate node, thus facilitating the intermediate node in applying the policy to the traffic flow.
Abstract:
A method for enforcing a network policy is described herein. In the method, a network socket event request from an application executing in a first context is intercepted by an agent prior to the request reaching a transport layer in the first context. A context refers to virtualization software, a physical computer, or a combination of virtualization software and physical computer. In response to the interception of the request, the agent requests a decision on whether to allow or deny the network socket event request to be communicated to a security server executing in a second context that is distinct from the first context. The request for a decision includes an identification of the application. The agent then receives from the security server either an allowance or a denial of the network socket event request, the allowance or denial being based at least in part on the identification of the application and a security policy. The agent blocks the network socket event from reaching the transport layer when the denial is received from the security server. In one embodiment, the method is implemented using a machine readable medium embodying software instructions executable by a computer.
Abstract:
Some embodiments provide a non-transitory machine readable medium of a first middlebox element of several middlebox elements to implement a middlebox instance in a distributed manner in several hosts. The non-transitory machine readable medium stores a set of instructions for receiving (1) configuration data for configuring the middlebox instance to implement a middlebox in a logical network and (2) a particular identifier associated with the middlebox in the logical network. The non-transitory machine readable medium stores a set of instructions for generating (1) a set of rules to process packets for the middlebox in the logical network and (2) an internal identifier associated with the set of rules. The non- transitory machine readable medium stores a set of instructions for associating the particular identifier with the internal identifier for later processing of packets having the particular identifier.
Abstract:
A controller of a network control system for configuring several middlebox instances is described. The middlebox instances implement a middlebox in a distributed manner in several hosts. The controller configures, in a first host, a first middlebox instance to receive a notification from a migration module before a virtual machine (VM) running in the first host migrates to a second host and to send middlebox state related to the VM to the migration module.
Abstract:
A controller of a network control system for configuring several middlebox instances is described. The middlebox instances implement a middlebox in a distributed manner in several hosts. The controller configures a first middlebox instance to obtain status of a set of servers and disseminate the obtained status to a second middlebox instance. The controller configures the second middlebox instance to use the status to select a server from the set of servers.
Abstract:
A controller of a network control system for configuring several middlebox instances is described. The middlebox instances implement a middlebox in a distributed manner in several hosts. The controller assigns a first set of identifiers to a first middlebox instance that associates an identifier in the first set with a first packet. The controller assigns a second set of identifiers to a second middlebox instance that associates an identifier in the second set with a second packet.