摘要:
A method includes comparing a length of a first packet to a threshold, determining that the first packet is a short packet when the length of the first packet is less than the threshold, and determining that the first packet is a long packet when the length of the first packet is greater than or equal to the threshold. The method also includes when the first packet is a long packet placing the first packet in a long packet container and transmitting the long packet container to a photonic switch. Additionally, the method includes when the first packet is a short packet placing a first portion of the first packet in a first short packet container, where the first short packet container includes a sequence number, a source top-of-rack switch (TOR) address, and a destination TOR address and transmitting the first short packet container to an electronic switch.
摘要:
In one embodiment, photonic switching fabric includes an input photonic commutator switch configured to receive a photonic frame stream including a plurality of containerized photonic packets and a first high port count photonic switch coupled to the input photonic commutator switch. The photonic switching fabric also includes a second high port count photonic switch coupled to the input photonic commutator switch, where the input photonic commutator switch is configured to route the photonic frame to either the first high port count photonic switch or the second high port count photonic switch and an output photonic commutator switch coupled to the first high port count photonic switch and the second high port count photonic switch, where the output photonic commutator switch is configured to output a switched photonic frame.
摘要:
A method (10) of configuring a synchronous optical switch to route received data cells. The synchronous optical switch comprises optical switch transmitter modules, each comprising tunable optical transmitters, optical switch receiver modules, each comprising optical receivers, and optical connections between the transmitter modules and receiver modules. For each optical switch transmitter module, the method: assigns (12) wavelengths associated with the received data cells to the transmitters such that each wavelength is assigned to a different transmitter; and generates (14) a control signal for controlling the operating wavelength of each transmitter. For each wavelength, the method: allocates (16) to each transmitter an optical connection such that each optical switch transmitter module has no more than one connection exiting it at said wavelength and each optical receiver module has no more than one connection entering it at said wavelength; and generates (18) a control signal for connecting each transmitter to the respective optical connection.
摘要:
In one embodiment, a three-stage scalable hybrid switch fabric has an input stage with one or more electronic input crossbar switches, a middle stage, and an output stage with one or more electronic output crossbar switches. The middle stage has (1) tunable optical transmitters that convert electrical signals received from the input stage into optical signals having selectable wavelengths, (2) one or more passive, wavelength-dependent optical routers that route the optical signals received from the transmitters at input nodes to output nodes, each output node determined by the wavelength of the optical signal and possibly by the input node at which the optical signal is applied, and (3) optical receivers that convert the routed optical signals into electrical signals provided to the output stage. Each scaling increment includes (i) an input crossbar switch and its corresponding optical transmitters and (ii) an output crossbar switch and its corresponding optical receivers.
摘要:
An apparatus and method for transferring optical data in an optical switching system are provided. When optical data input to a node are in contention, the optical data are converted from optical signals to electrical signals and temporarily stored. When an output resource is available, the stored optical data are converted to the available output resource and transmitted to a desired destination node. This overcomes the buffering depth limit that is observed when a conventional optical fiber delay line is used. Accordingly, an optical data loss rate can be reduced such that optical data can be efficiently transferred. Further, non-contending optical data are directly delivered to output resource by the switching unit, thereby reducing the cost of optical/electrical conversion and wavelength conversion and enabling the apparatus to be implemented at low cost.
摘要:
The invention is an apparatus and method for scheduling the flow of packets. Its purpose is to reduce excess loads, while at the same time, improving efficiency of the system. The scheduler is divided into two or more schedulers operating in parallel. Furthermore, each scheduler is assigned a subset of the available wavelengths. The assignment of wavelengths is done in an asymmetric manner such that one scheduler is assigned many more wavelengths. In addition, the void filling scheduler is used in conjunction with bandwidth grabbing to improve scheduling performance. In a preferred embodiment, the buffer occupancy of a first scheduler is monitored. If it is below a threshold (and a second scheduler's buffer is full), then packets intended for the second scheduler are transferred to the first scheduler.
摘要:
The invention relates to a modular optical network node, which divides the optical input signals into optical subbands, processed by a central element or by several central elements and which then recombines the optical subbands once again to form an optical output signal. Various functionalities, such as add-drop functionality, a drop and continue functionality, a multicast functionality, a broadcast functionality, a ring interconnect functionality, and a cross connect functionality, can be assigned to the central element or to the central elements of the modular optical network node. According to the assignment of a functionality, the modular optical network node can be used in networks having a different structure.
摘要:
In one embodiment, a scalable cross-connect switching system and its corresponding method perform a bridging operation by splitting the incoming light signal into at least a first bridged light signal and a second bridged light signal. The first bridged light signal has a power level equal to or substantially greater than a power level of the second bridged light signal. The disproportionate power levels provide low-loss bridging. Light signals based on these bridged light signals are routed through multiple switch fabrics which provide redundancy in case of failure by switching within the switch fabric. To detect failures, a test access port is configured for monitoring multiple optical paths.
摘要:
The invention relates to a modular optical network node, which divides the optical input signals into optical subbands, processed by a central element or by several central elements and which then recombines the optical subbands once again to form an optical output signal. Various functionalities, such as add-drop functionality, a drop and continue functionality, a multicast functionality, a broadcast functionality, a ring interconnect functionality, and a cross connect functionality, can be assigned to the central element or to the central elements of the modular optical network node. According to the assignment of a functionality, the modular optical network node can be used in networks having a different structure.