Abstract:
An exemplary method is implemented by an on-board microcontroller provides collision avoidance information for unmanned vehicle systems (UAS). A first UAS sensor provides first measurements of the other in-flight aircraft facilitating a determination that the other in-flight aircraft is within a field of collision avoidance. Instructions are sent to a second UAS sensor of a type different from the type of the first sensor, where the instructions direct the second UAS sensor to attempt to detect and track the other in-flight aircraft based on location information received from the first sensor. The instructions cause the initiation of a limited field of regard scan by the second sensor. Second measurements of the other in-flight aircraft are received from the second UAS sensor. A determination that the other in-flight aircraft is within a field of collision avoidance concern is based on the both the first and second measurements. A potential collision alert and targeting information of the other in-flight aircraft is sent to an aircraft control system for a determination of whether collision avoidance maneuvering should be executed.
Abstract:
Various antennas and systems of antennas can benefit from meta-material construction. For example, avionics antennas including weather antennas may benefit from being constructed of meta-materials. A method includes electronically scanning, by an antenna of an aircraft, an environment of the aircraft. The electronically scanning includes transmitting or receiving an electrical frequency over the antenna. The antenna includes a negative index of refraction meta-material. The electronically scanning also includes applying an electric field to control a dielectric constant of the antenna.
Abstract:
A method of positioning a plurality of radar units in a defined area amongst one or more legacy radar units that provide legacy radar coverage in the defined area is disclosed. The steps of identifying a location of each legacy radar unit, setting a threshold altitude, and determining a legacy occultation of each legacy radar unit from a landscape level up to the threshold altitude are also disclosed. Mapping the legacy occultation of the legacy radar units to provide a three dimensional occultation map in the defined area and locating gaps below the threshold altitude in the legacy radar coverage as a function of the occultation map are also disclosed.
Abstract:
The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.