摘要:
A method for recovering the valuable materials from energy storage devices (e.g., spent rechargeable lithium batteries, especially those batteries using nickel-based or nickel and cobalt containing cathode materials) are described. In particular, the proposed method applies carbonyl technology, also known as vapometallurgy, to regenerate pure materials which can be reused as raw materials for making active cathode materials for new lithium batteries.
摘要:
A process for water removal and/or recycling of sodium sulfate and/or sodium dithionate containing liquors derived from processing cobalt resource material essentially free of lithium comprising the steps of precipitation of cobalt as cobaltous carbonate or cobaltous hydroxide followed by removal thereof from the liquor, crystallization of sodium sulfate and sodium dithionate and removal of the crystals, followed by heating of the crystals to anhydrous sodium sulfate, sulphur dioxide and water and then separating the anhydrous sodium sulfate.
摘要:
Nickel entrained in the sulphide mineral pyrrhotite is engineered to dissolve in leaching acid in a two step procedure. First, a slurry of the mineral and the acid is activated by oxidation. This is done in a time Tl by electrolysis; or alternatively chemically, by adding e.g an oxidising acid to the mineral. After activation, the slurry is then kept under anoxic conditions for a time T2. During T2, the sulphide starts to dissolve much more rapidly, and the rapid breakdown of the sulphide enables the nickel to dissolve and thus to be leached out of the mineral. The dissolved nickel is extracted from the leaching acid e.g by electro-winning.
摘要:
On production of Ni-Mn-Ga single crystals, the fusion of the pure metal in arc furnaces is known, whereupon significant amounts of manganese are lost due to the high partial pressure thereof. The solidified metal is then fused and crystallised in a Bridgman or Czochralski method. During this process the manganese is also lost. A further disadvantage of the known method is the formation of pores and occlusions. This problem is conventionally resolved by the use of repeated fusion. The aim of the invention is a simple method and an arrangement for crystal growth from fused metals or fused solutions and crystallisation by conventional methods, permitting the production of larger, purer, pore- and occlusion-free single crystals from metals and intermetallic compounds and alloys. Said aim is achieved for the method for crystal growth from fused metals or fused solutions and crystallisation with the crystallisation occurring by controlled solidification, whereby the fused metal or used solution is brought into contact with a slag-forming flux and completely enclosed by the same. The metal phase is purified by dissolution of impurities in the slag. Also due to the complete enclosure, a contact between the fused metal or fused solution and the crucible is prevented and the evaporation of volatile components of the fused metal or fused solution reduced. The method is suitable for the crystal growth of numerous metals, inter-metallic compounds and alloys, in particular for the production of single crystal aircraft turbine blades with particularly low sulphur concentrations in the blades.
摘要:
The present invention relates to a process for the recovery of transition metals from battery materials comprising (0.1) providing a battery material which comprises oxidic nickel and/or cobalt compounds, (1.1) heating the battery material above 350 °C to yield a reduced material which contains nickel and/or cobalt in elemental form, (2.1) carbonylating the reduced material with carbon monoxide optionally in the presence of a reactive gas to yield a solid carbonylation residue and a volatile carbonyl which comprises nickel and/or cobalt carbonyl containing compounds, and (3.1) separating the volatile carbonyl from the solid carbonylation residue by evaporation.
摘要:
The invention provides a process for recovering copper (Cu) and cobalt (Co) from a copper–cobalt containing material sample, and which is adapted for treating both low and high grades of copper–cobalt source material, such as Cu-Co slag, Cu-Co low grade ores, Cu-Co high grade ores / concentrates, Cu-Co tailings and Cu ores. The process is characterised therein that recovery is achieved through electro-cementation. It comprises the steps of (i) leaching the material sample in an acidic pH; (ii) separating waste material solids through solid/liquid separation to recover a solution containing copper, cobalt and iron (Fe); (iii) recovering copper from solution through electro-cementation such that copper is electro-cemented onto a mild steel plate anode and cathode, leaving a solution containing cobalt and iron; (iv) recovering iron from the solution through precipitation as iron oxide; and (v) recovering cobalt from the solution through precipitation.