Abstract:
Conventional methods of sorting and identifying objects in waste loads often include manual processing, which can be inefficient, expensive and time-consuming. The present invention seeks to overcome the disadvantages of the prior art by providing a system comprising: a scanning module configured for LiDAR measurement, a second laser configured for secondary wave generation, a third laser configured for measurement of the secondary wave and a processing unit configured to: generate a three-dimensional model of the waste load from the LiDAR measurement; and determine the density of an object located within the three-dimensional model from the third laser measurement. In this way, objects may be automatically detected and identified within a waste load without the need of human intervention, thereby enabling improved removal and/or targeting of the objects prior to further processing of the waste load.
Abstract:
Die Erfindung betrifft eine optische Vorrichtung (100) sowie Systeme zur Nah- und Fernabbildung, umfassend eine optische Einheit (10) mit einer ersten optischen Linse (12) und einer zweiten optischen Linse (14), wobei die erste optische Linse (12) und zweite optische Linse (14) entlang einer optischen Achse (20) angeordnet sind, eine Sende- und Empfangseinheit (30) mit einem Sende- und Empfangselement (32, 34, 36, 38, 40), wobei eine Lichtdurchtrittsfläche (42, 44, 46, 48, 50) des Sende- und Empfangselements (32, 34, 36, 38, 40) in einer ebenen oder gewölbten Fläche (66, 67) angeordnet ist oder diese schneidet. Entlang der optischen Achse (20) ist ein erster Abstand (62) zwischen der Fläche (66) und der ersten optischen Linse (12) so eingestellt vorgesehen ist, dass im bestimmungsgemäßen Normalbetrieb das Sende- und Empfangselement (32, 34, 36, 38) der Sende- und Empfangseinheit (30) von der optischen Einheit (10) auf eine entfernte Abbildungsfläche (16) abgebildet ist.
Abstract:
Verfahren zur Ansteuerung von Emitterelementen (5) eines LIDAR- Messsystems, das in einer Focal-Plane-Array Anordnung ausgebildet ist, wobei die Emitterelemente (5) einer Emitteruntermenge (6) nacheinander aktiviert werden, wobei das jeweils folgende Emitterelement (5) der Emitteruntermenge (6) erst nach dem Ende einer Wartezeit (tn, tn+Δtx) aktiviert wird, und eine entsprechende Vorrichtung zu Ansteuerung von Emitterelementen (5) eines LIDAR-Messsystems, sowie ein entsprechendes LIDAR-Messsystem.
Abstract:
Methods and apparatus for detecting a modulating element of an objectin a sceneare described in which an element in a scene is illuminated with a modulated light source. A signal is obtained from an optical detector based on light received from the illuminated element. An intermediate frequency signal is detected from the signal obtained from the optical detector, the intermediate frequency signal being related to a frequency of the modulated light source and a frequency of modulation of the element within the scene. The modulating element is detected based on the intermediate frequency signal.
Abstract:
Dispositivo de vigilancia del ritmo respiratorio de un sujeto que comprende unos medios de detección de cambios en un torso del sujeto indicativos de movimientos de respiración, un procesador que recibe unas señales procedentes de los medios de detección y comprueba que una frecuencia respiratoria del sujeto está dentro de unos valores de referencia de frecuencia respiratoria pre-establecidos, y unos medios de prevención de emergencias adaptados para ser accionados por el procesador, donde, los medios de detección comprenden un emisor láser adaptado para proyectar al menos un punto sobre el torso del sujeto, una cámara y un filtro, acoplado a la cámara, adaptado para detectar únicamente elespectro de luz emitido por el emisor láser. Es también objeto de la presente solicitud un procedimiento para el mismo fin.
Abstract:
A motion detecting engine is provided. Given a pair of stereo rectified images in which the stereo rectified images are taken at different times from one or more sensors that are oriented perpendicular to a stereo baseline and parallel to each other, for each feature in one of the stereo rectified images, the motion detecting engine associates a subject feature with the same feature in the other stereo rectified image to form a feature association. For each feature association, the motion detecting engine forms a feature motion track following a subject feature association from one of the stereo rectified images to the other stereo rectified image. The motion detecting engine then differentiates feature motion tracks from other feature motion tracks that are parallel to the stereo baseline. The feature motion tracks being differentiated by the motion detecting engine represent detected objects that are moving with respect to the ground.
Abstract:
Systems and methods for laser based measurement of air parameters are disclosed. An example system includes a source of radiation, an amplification system with one or more power amplification stages, a transceiver, and an optical mixer. The source produces a plurality of beams, and the amplification system is configured to amplify the beams. The transceiver is configured to transmit the modulated beam to, and receive a scattered beam from a target region. The optical mixer is configured to determine a difference between the scattered beam and a reference beam, which is used to determine a Doppier shift therefrom. In certain embodiments, the amplification system includes a fiber preamplifier and one or more fiber power amplifiers stages.