Abstract:
The invention concerns improvements in the performance of a mobile gravity gradient instrument (GGI). Gravity gradiometers measure one or more components of the gradient of gravity which is expressed as the gradient of a gravity vector, or in other words a tensor. The instrument comprises a first, second, third and fourth accelerometer (1, 2, 3, 4) equally spaced around the circumference of a circle, with their sensitive axes tangential to the circle, and arranged in opposing pairs with the first accelerometer opposite the second and the third accelerometer opposite the fourth. In use the accelerometers are spun around an axis (6) normal to the circle which passes through its centre. A summing amplifier receives the outputs of the accelerometers and combines them in a manner to cancel the common mode output signals and so produces an instrument output. One or more feedback loops extend from the instrument output to one or more of the accelerometers to compensate for errors. In general, the invention embraces the concept of balancing any feedback signal so that it is applied after appropriate division (if required), to two or more of the accelerometers in appropriately inverted senses, rather than being applied to a single accelerometer.
Abstract:
This invention concerns improvements to gravity gradient instruments (GGI) and in particular to the accelerometers that are paired within these instruments. Accelerometers (1) have a proof mass (2) suspended by a spring (3) within a magnetic field. An internal feedback loop (6) provides a signal related to movement of the proof mass back through a reaction coil (7) retaining the proof mass in the magnetic field, to maintain the proof mass stationary. An external feedback loop (17) adjusts the accelerometer scale factor. The internal feedback loop provides second order compensation to the proof mass and the spring stiffness. In a further aspect the invention is a method of matching accelerometer pairs.
Abstract:
A method and system for in-sit calibration of a gravimeter. A method may comprise disposing a downhole tool in a borehole, wherein the downhole tool comprises the gravimeter attached to a linear actuator, recording a first set of measurements with the gravimeter while the linear actuator is stationary, activating the linear actuator, recording a second set of measurements with the gravimeter, and calibrating the gravimeter based on the first and second set of recorded measurements. A system may comprise a downhole tool, a conveyance, and an information handling system. The downhole tool may further comprise a hanger, a sonde, connected to the hanger, a linear actuator, connected to the hanger, and a shaft, connected to the linear actuator. The downhole tool may further comprise a linkage, connected to the shaft, a package, connected to the linkage, and a gravimeter, disposed in the package.
Abstract:
An apparatus for estimating gravitational properties includes an optical source, a first interferometer including a fixed reference reflector and a first reflector coupled to a first moveable mass, a second interferometer including the fixed reference reflector and a second reflector coupled to a second moveable mass, a first detector configured to detect a first interference pattern generated by the first interferometer, and a second detector configured to detect a second interference pattern generated by the second interferometer. The first mass is configured to move a first amount in response to a change in gravitational force, and the second mass is configured to move a second amount in response to a change in gravitational force, the second amount being smaller than the first amount. The apparatus also includes a processor configured to estimate the change in gravitational force based on a combination of the first and second interference patterns.
Abstract:
A non-contacting spherical air bearing-based stable platform for use by a gravity gradiometer instrument (GGI) is provided by attaching a spherical ball-shaped bearing to a rotational stage of the GGI and integrating a concave spherical cup in the linear stage and mounting base assembly of the GGI which is fixedly attached to a host vehicle or platform. The spherical cup supports the spherical ball-shaped bearing on a thin cushion of air provided by a source of compressed air or gas at the concave surface of the spherical cup. The spherical ball-shaped bearing is supported, providing three degrees of rotational freedom of motion without the need for slip rings, flex capsules, races, or mechanical bearings, thereby reducing or eliminating gradient disturbance signals owing to parasitic torques and jitter in the output of the accelerometers of the GGI.
Abstract:
A method of measuring an acceleration using one or more trapped BECs and at least two atomic field modes within those BECs is described. A density distribution of at least one of the one or more BECs is modified by the acceleration, which leads to a change of the field modes' time evolution. The method comprises: selecting two modes that are differently affected by the acceleration; and measuring the acceleration-induced difference; and using the measured acceleration-induced difference to infer the acceleration. Also described is a method of measuring a field gradient using one or more trapped BECs. Each of the trapped BECs has a density distribution, and at least two atomic modes within those BECs, wherein the density distributions of the one or more BECs are modified by the field, which leads to a change of the atomic modes' time evolution. The method comprises selecting two atomic modes that are differently affected by the field; and measuring a field- induced difference between the selected atomic modes; and using the measured field- induced difference to infer a gradient of the field.
Abstract:
A high-resolution digital seismic and gravity sensor includes an inertial mass connected to one or more force-sensitive resonators. The weight of the inertial mass is substantially unloaded with a spring arrangement when exposed to the force of the static gravity field. Seismic accelerations applied to the base of the seismic and gravity sensor, or changes in the gravitational field, generate loads that are transmitted to force-sensitive resonators so that changes in resonant frequency are related to the applied load. The changes in resonant frequency are thus a measure of the seismic accelerations and gravitational field variations.
Abstract:
A high-resolution digital seismic and gravity sensor includes an inertial mass connected to one or more force-sensitive resonators. The weight of the inertial mass is substantially unloaded with a spring arrangement when exposed to the force of the static gravity field. Seismic accelerations applied to the base of the seismic and gravity sensor, or changes in the gravitational field, generate loads that are transmitted to force-sensitive resonators so that changes in resonant frequency are related to the applied load. The changes in resonant frequency are thus a measure of the seismic accelerations and gravitational field variations.