Abstract:
실시에에 따른 광 경로 제어 부재는, 제 1 기판; 상기 제 1 기판 상에 배치되는 제 1 전극; 상기 제 1 기판 상에 배치되는 제 2 기판; 상기 제 2 기판 하에 배치되는 제 2 전극; 상기 제 1 전극 및 상기 제 2 전극 사이에 배치되는 광 변환부; 및 상기 광 변환부와 상기 제 2 전극 사이의 접착층을 포함하고, 상기 광 변환부는 교대로 배치되는 격벽부 및 수용부를 포함하고, 상기 수용부 내부에는 광의 투과율을 변화하는 분산액이 배치되고, 상기 분산액은 상기 수용부의 바닥면, 내측면 및 상기 접착층의 하면과 직접 접촉하며 배치되고, 상기 분산액과 상기 수용부의 바닥면 및 내측면의 제 1 접촉각은 20° 이하이고, 상기 분산액과 상기 접착층의 하면의 제 2 접촉각은 20° 이하이고, 상기 제 1 접촉각 및 상기 제 2 접촉각의 차이는 1° 내지 5°이다.
Abstract:
본 출원은 광학 소자의 구동 방법, 상기 광학 소자, 투과율 가변 장치 및 이의 용도에 관한 것이다. 일 예시에서 본 출원은, GH셀의 셀갭(cell gap)이 두꺼워지는 경우에도 벌크 액정 화합물(Bulk Liquid Crystal Host)에 의한 백플로우(back flow) 현상을 억제하고, 빠른 응답 속도와 우수한 구동 특성이 확보되는 구동 방식이 제공될 수 있다.
Abstract:
Dispositif pour la mise en forme temporelle en amplitude et en phase d'impulsions ultra-brèves, comprenant : - un guide d'onde biréfringent 1 d'axe principal Δ constitué d'un cristal liquide nématique 2 situé entre un matériau photoconducteur 3 et un substrat 4, - deux électrodes transparentes situées l'une 5 entre ledit cristal liquide nématique 2 et ledit substrat 4, et l'autre 6 de sorte que ledit matériau photoconducteur 3 est situé entre cet autre 6 et ledit cristal liquide nématique 2, et - d'une optique de projection 7 d'un masque optique programmable 8 sur ledit matériau photoconducteur 3.
Abstract:
A method is provided for forming an image on a media while the media is moved relative to an imaging head. The media can include a pattern of registration sub-regions. The image can include patterns of features, such as color filter features or colored illumination sources which can be registered with the pattern of registration sub-regions. The imaging method can include operating an imaging head to emit a plurality of independently-controllable radiation beams while scanning over media to form an image on the media. The imaging channel of the imaging head can be operated to emit a radiation beam having a first intensity while scanning in a first direction over the media during a first scan and to emit a radiation beam having a second, different intensity while scanning in a second, opposite direction over the media during a second scan.
Abstract:
L'invention concerne un dispositif d'obturation électro-optique (1000) comprenant au moins deux premières électrodes (1001, 1200) et au moins une première cellule comprenant une couche d'un matériau électro-optique, la ou lesdite(s) première(s) cellule(s) étant disposée(s) entre lesdites premières électrodes, chacune de la ou desdites première(s) cellule(s) étant commutable entre au moins un état passant, dans lequel elle transmet un faisceau lumineux, et au moins un état bloquant, dans lequel elle ne transmet pas le faisceau lumineux, en fonction notamment du champ électrique qui est appliqué à ladite première cellule via les premières électrodes. Selon l'invention, un tel dispositif d'obturation comprend également au moins une couche massive d'un premier matériau photosensible et à grande résistivité transverse prévue entre lesdites premières électrodes.
Abstract:
A method for defect detection using transmissive bright field and transmissive dark field illumination, the method includes: determining a relationship between at least one transmissive bright field illuminator characteristic and at least one transmissive dark field illuminator characteristic in response to at least one characteristic of each defect type out of multiple defect types that should be detected during a defect detection session and in response to at least one phenomenon to be ignored of during the defect detection session; setting the at least one transmissive bright field illuminator characteristic and the at least one transmissive dark field illuminator characteristic according to the determination; illuminating an at least partially transparent object by the transmissive dark field illuminator and by the transmissive bright field illuminator; detecting light that passes through the at least partially transparent object to provide detection signals; and processing the detected signals in order to detect defects.
Abstract:
Color displays such as color liquid crystal displays (105) and touch sensitive displays (510) include a substantially transparent back plate (120) or backside and are stacked with one or more solar cells (150) such that light passing through the displays will illuminate the light receiving active surface of the solar cells (150). A pixelized color reflector (121) is used that comprises a patterned color reflector. The resultant display/solar cell can be utilized in combination with a portable electronic device (720) such as a wireless communications device, with the solar cell (150) providing electricity to the display (710), the portable electronic device (720), or both. A mask (810) can be used to occlude surface features on the solar cell (150) as appropriate to provide a substantially uniformly colored appearance.
Abstract:
A chirp compensation dielectric multi-layer film mirror (10) has group delay characteristics that reflect an incident light in a specified wavelength region and prevents at least one of the dielectric multi-layer film mirror (10) and a light transmission unit within the specified wavelength region from giving a phase disturbance to an incident light. Therefore, all the wavelength components of an incident light in a specified wavelength region are reflected by the mirror (10), and no excessive phase disturbance is caused by the mirror (10) and the light transmission unit. Accordingly, a spatial optical modulator (1) enables a desired modulation only by a liquid crystal layer without giving an excessive phase disturbance to an outgoing light.
Abstract:
The invention relates to a switching device having shorter switching times. The device comprises a switchable layer (3), which is switched between a reflecting and an absorbing state by changing a hydrogen content of the switchable layer (3). Applying a DC voltage on electroconductive layers (11, 13) changes the hydrogen content. These electroconductive layers (11, 13) sandwich a stack of layers comprising the switchable layer (3) and a hydrogen storage layer (9). The hydrogen storage layer comprises essentially the same compounds as the switchable layer (3), viz. LMgHx and preferably GdMgHx. The storage layer may be made thin, leading to relatively short hydrogen transportation times and a relatively fast display. The device may be further improved by applying a scattering foil.