Abstract:
A heat‑assisted magnetic recording (HAMR) disk drive uses a semiconductor laser mounted on a slider to deliver light to a near-field transducer (NFT) via a waveguide located inside the slider. The waveguide includes a core and cladding material that is transparent to the laser light and surrounds the core. Layers of stray light absorption material are located inside the slider on opposite edges of the waveguide core in the same plane as the core and on opposite sides of the waveguide core in planes spaced from the plane of the core. Portions of the waveguide cladding material are located between the waveguide core and the stray light absorption layers. The stray light absorption layers absorb light that leaks into the cladding material and substantially reduces stray light reflected to the laser to prevent undesirable laser power fluctuation.
Abstract:
Embodiments of the present disclosure generally relate to a vertical cavity surface emitting laser, a head gimbal assembly for mounting a vertical cavity surface emitting laser, and devices incorporating such articles. In an embodiment, a vertical cavity surface emitting laser (VCSEL) device is provided. The VCSEL device includes a chip for mounting on a slider and two laser diode electrodes. The chip has six surfaces, wherein a first surface of the chip is for facing the slider, a second surface of the chip is opposite the first surface, and the two laser diode electrodes are positioned in any combination on one or more of a third surface, a fourth surface, a fifth surface, or a sixth surface of the chip.
Abstract:
A trace gimbal is described herein. In some embodiments, the trace gimbal includes outer struts including a front outrigger at a distal end of the trace gimbal and a rear outrigger at a proximal end of the trace gimbal. The front outrigger includes a distal front outrigger and a proximal front outrigger, and the rear outrigger includes a distal rear outrigger and a proximal rear outrigger. The trace gimbal further includes a middle strut extending in a width direction of the trace gimbal and adjoining the proximal front outrigger to the rear outrigger, and an inner strut connecting the middle strut to a slider tongue. The inner strut includes a slot, and the inner strut and the middle strut adjoin the outer gimbal struts to the slider tongue.
Abstract:
A storage medium controller has been designed to maintain thermal stability of a heat source based on a history of heat source active/inactive durations so that a variation in spot size generated by the heat source is reduced during Heat Assisted Magnetic Recording (HAMR). The storage medium controller modulates power to the heat source based on these active/inactive durations. While the heat source is inactive, the storage medium controller increases a thermal compensation value and after the heat source is activated, the storage medium controller drives the heat source according to a current parameter proportional to the thermal compensation value. As the heat source continues being active, the storage medium controller decreases the thermal compensation value and proportional current parameter so that thermal stability of the heat source is maintained.
Abstract:
Devices having air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein at least one of a portion of the peg, a portion of the disc, or a portion of both the peg and the disc include a multilayer structure including at least two layers including at least one layer of a first material and at least one layer of a second material, wherein the first material and the second material are not the same and wherein the first and the second materials independently include aluminum (Al), antimony (Sb), bismuth (Bi), boron (B), barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), erbium (Er), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), indium (In), iridium (Ir), iron (Fe), lanthanum (La), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), osmium (Os), palladium (Pd), platinum (Pt), rhenium (Re), rhodium (Rh), ruthenium (Ru), scandium (Sc), silicon (Si), silver (Ag), strontium (Sr), tantalum (Ta), thorium (Th), tin (Sn), titanium (Ti), vanadium (V), tungsten (W), ytterbium (Yb), yttrium (Y), zirconium (Zr), or combinations thereof.
Abstract:
Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
Abstract:
A device including a magnetic structure, the magnetic structure having a substrate adjacent surface and a second, opposing surface, the magnetic structure having a near field transducer (NFT), wherein the NFT includes gold or an alloy thereof, and is positioned at the second surface an overcoat structure; and a film structure, the film structure positioned between the magnetic structure and the overcoat structure, the film structure having a total thickness of not greater than about 100 A, and the film structure including: a first interfacial structure having a first and a second opposing surface; a second interfacial structure having a first and a second opposing surface; and an intermediate structure wherein the first surface of the first interfacial structure is positioned adjacent the NFT of the magnetic structure, and the second surface of the second interfacial structure is positioned adjacent the overcoat structure, and the intermediate structure is positioned between the first interfacial structure and the second interfacial structure, and wherein the first interfacial structure includes one or more rare earth elements, one or more alkaline earth metals, one or more alkali metals, or a combination thereof.
Abstract:
A hard disk drive comprising a mixed layer is provided to reduce the head- media spacing in the hard disk drive by embedding a surface of a magnetic recording medium or head of the hard disk drive with energetic ions. The mixed layer provides sufficient protection against corrosion and wear of the magnetic layer of the magnetic recording medium without requiring any DLC and/or lubricant overcoat.