A system includes a storage device to store information associated with virtual nodes that correspond to network nodes. The system also includes a server to install a virtual node that corresponds to one of the network nodes, based on the information associated with the virtual node, where installing the virtual node includes creating a logical interface via which traffic is to be sent to, or received from, other virtual nodes; start the virtual node to create an operating virtual node based on a copy of an operating system that is run on the network node, where starting the virtual node causes the operational virtual node to execute the copy of the operating system; and cause the operating virtual node to communicate with a virtual network that includes the virtual nodes, where causing the operating virtual node to communicate with the virtual network enables the operating virtual node to receive or forward traffic associated with the virtual network.
A method for scheduling a service processing resource, includes: setting multiple processing capability ranks of a processing resource and marking actual processing capability corresponding to each processing capability rank for the processing resource separately; calculating the service fluctuation quantity according to a change of the actual service quantity processed by the processing resource; calculating, according to the service fluctuation quantity, a reserved idle processing capability for eliminating an effect from a service fluctuation; and circularly scheduling the processing capability ranks of the processing resource according to the actual processing capability marked by each processing capability rank, wherein the reserved idle processing capability, service fluctuation quantity, and service quantity are to be processed.
A computer-implemented method for comparing multiple client application variations, including, providing a copy of a client application to each of a plurality of client devices, wherein each copy of the client application comprises multiple application variations, receiving demographic information from one or more of the plurality of client devices and providing a list of available experiments to each of the plurality of client devices based on the demographic information, wherein each of the available experiments corresponds with one or more application variations. In certain implementations, the method further includes steps for receiving usage information for each copy of the client application associated with each of the plurality of client devices and comparing two or more application variations of the client application based on the usage information. Systems and computer-readable media are also provided.
Systems and methods for managing computing systems are provided. One system includes a capture device for capturing environmental inputs, memory storing code comprising a management module, and a processor. The processor, when executing the code comprising the management module, is configured to perform the method below. One method includes identifying a target device in a captured environmental input, and comparing the target device in the captured environmental input to a model of the target device. The method further includes recognizing, in real-time, a status condition of the target device based on the comparison and providing a user with troubleshooting data if the status condition is an error condition. Also provided are physical computer storage mediums including a computer program product for performing the above method.
Back pressure is mapped within a network, and primary bottlenecks are distinguished from dependent bottlenecks. Further, the presently disclosed technology is capable of performing network healing operations designed to reduce the data load on primary bottlenecks while ignoring dependent bottlenecks. Still further, the presently disclosed technology teaches identifying and/or suggesting a switch port for adding a node to the network. More specifically, various implementations analyze traffic load and back pressure in a network, identify primary and dependent bottlenecks, resolve the primary bottlenecks, collect new node parameters, and/or select a switch port for the new node. Further, a command can be sent to a selected switch to activate an indicator on the selected port. New node parameters may include new node type, maximum load, minimum load, time of maximum load, time of minimum load and type of data associated with the new node.
The policy formulating method includes: receiving, by a policy server, User-Agent user-agent information sent by a gateway, where the User-Agent information carries type information of a terminal or type information of a browser used by a terminal; determining, by the policy server, a type of the terminal according to the User-Agent information; and formulating, by the policy server, a charging policy and/or a QoS quality of service policy according to the type of the terminal. Type information of a user terminal or type information a browser used by a terminal is reported to a policy server; the policy server is capable of correctly distinguishing a terminal type, for example a mobile phone or a PC is surfing the Internet, and then the policy server formulates a corresponding policy to implement Internet access charging and QoS guarantee.
The disclosure describes techniques to pre-compute the effect of modifying components in a data center switch prior to actually modifying the components. A data center analyzer is configured to discover the topology of the switch and present an editable version of the topology to a data center administrator. The data center analyzer receives proposed modifications to the current topology, including removed, replaced or updated components, and applies a non-distributed copy of the traffic distribution algorithm to the modified topology to compute an expected traffic distribution and traffic metrics. The administrator may then determine whether to modify the components based on the expected traffic distribution and associated traffic metrics. When the administrator allows modification of the components, the data center analyzer may compute and install alternative routing paths for components in the data center switch to minimize data loss due to the modified components.
A data processing system comprising: first and second network ports each operable to support a network connection configured according to one or more of a predetermined set of physical layer protocols; and a processor configured to, on a network message being formed for transmission to a network endpoint accessible over either of the first and second network ports: estimate the total time required to, for each of the predetermined set of physical layer protocols, negotiate a respective network connection and transmit the entire network message over that respective network connection; select the physical layer protocol having the lowest estimate of the total time required to negotiate a respective network connection and transmit the network message over that respective network connection; and configure at least one of the first and second network ports to use the selected physical layer protocol.
Provided is process of operating a wireless device configured to act as a node in an ad hoc multi-hop mobile network, the process including: snooping, with a wireless device, a packet transmitted from a sending node to a receiving node in a multi-hop wireless connection, the sending node and the receiving node being in a different location; extracting from the snooped packet an identifier of the sending node and an identifier of the receiving node; determining based on the identifier of the sending node, the identifier of the receiving node, and a record in memory of the wireless device that the wireless device is part of a multi-hop wireless connection including the sending node and the receiving node; determining that a signal strength of a signal conveying the snooped packet exceeds a threshold; and transmitting a kill packet to the sending node and the receiving node that reconfigures the multi-hop wireless connection to bypass the receiving node.
A network switch is provided which can shorten a time required for switching-over to a backup route when a failure has occurred in a port for which an LAG is set. The network switch includes a failure detection unit for detecting a port failure, and a forced transfer processing unit for, when a failure is detected in a port at a transfer destination as a target in trying to transfer a received unicast frame and when an link aggregation group is set for a plurality of ports including the relevant port at the transfer destination, forcibly transferring the received unicast frame to another port for which the same link aggregation group as that set for the relevant port at the transfer destination is set.
A management data area including a plurality of pulsed signals is provided in a series of pulsed signals outputted from the main station to the common data signal line, the area being different from a control/monitoring data area including data of a control data signal and data of a monitoring data signal. The substation sets random number data generated by its own station as an original number, generates pieces of comparison/collation data having a plurality of bits based on the original number, and superimposes a signal including the pieces of comparison/collation data on the management data area. The main station determines existence of address overlap of the substations based on a result of comparing the pieces of comparison/collation data complying with a predetermined rule.
A method and an apparatus are provided in an OFDM receiver for detecting and compensating for long echo. The method comprises a first pilot tone interpolation mechanism and a first window placement to filter a received OFDM symbol, a long echo channel detection coupled with a second pilot tone interpolation mechanism, a pre-echo and post-echo detection wherein the pre-echo condition is associated with a second new window placement, and both pre-echo and post-echo conditions place two time windows around a first peak channel response and a second peak channel response for channel estimation. The long echo is estimated by obtaining power spectra of a subset of subcarriers in one OFDM symbol, performing an inverse Fourier transform on the power spectra and determining the long echo by measuring the time between two peaks in the power profile.
Prior to a first configuration change of a first resource, such as a network resource of a network, a processor determines a first performance metric of a second resource, such as a second network resource of the network. The first configuration change does not result in complete failure or fault of the second resource. Subsequent to the first configuration change of the first resource, the processor determines a second performance metric of the second resource and compares the second performance metric to at least one of the first performance metric and a service objective to yield comparison results. Based on the comparison results, the processor can cause a second configuration change of the first resource. The second configuration change of the first resource can revert a configuration of the first resource to its state prior to the first configuration change.
In some embodiments, a global tree structure identifying rendezvous points between a layer 1 network area and a layer 2 network area may be created. When the rendezvous point receives a data packet associated with a destination for the layer 1 network area from the layer to network area, it may forward the data packet to the destination. Non-rendezvous point devices may discard copies of the data packet.
Disclosed is a computer-implemented method and system for tagging content for social interchange. When a user-generated post is received from a user device accessing a document from an online education platform for posting to an external social network, the system tags the user-generated post with a unique document-part identifier (ID) identifying a part of the document with which the post is associated. The document-part ID identifies the same part in both electronic and paper versions of the document. The post tagged by the document-part ID is posted to a live feed associated with the document-part ID on the external social network. User-generated posts from the live feed associated with the document-part ID on the external social network can be retrieved and displayed to the user.
A method for signing a document to be transmitted between two correspondents, i.e. a sender and an addressee, including recording the sender and the addressee of the document for the allocation of a digital identity thereto; authorizing by the addressee a correspondence with the sender; ciphering the document; indicating to the addressee that the document is available; detecting an access to the document by the addressee; generating an electronic report indicating the delivery of the document, the document-delivery electronic report including a set of data associated with the transmission of the document to the addressee, the set including identification of elements concerning the addressee authentication, the sealing of the document, the access to the document by the addressee and the time-stamping of the access to the document by the addressee; and electronically signing, by a reliable third-party using the private key thereof, the document-delivery electronic report.
The invention is directed to a system to authenticate an electronic message to a recipient in a sender's handwriting. The system has a server including a processor and a software application configured to execute instructions related to: identifying the electronic message composed by the sender, converting the electronic message composed by the sender into the sender's handwriting, where the sender's handwriting is in an electronic format; the electronic format defining a sender's electronic handwriting message, formatting the sender's electronic handwriting message to correspond to the formatting of the electronic message composed by the sender, encrypting the sender's electronic handwriting message to restrict readability of contents, and transmitting the sender's electronic handwriting message to the recipient. The invention is also directed to a method to authenticate the electronic message to the recipient in the sender's handwriting and a method to decipher the sender's electronic message delivered to the recipient.
Technologies are provided for shared secret generation between a server and a client using cached data. In some examples, a server may send a number of encrypted secrets to a client that caches a number of data blocks previously provided by the server. Each of the encrypted secrets may be encrypted using a data block that may or may not be cached at the client. The client may then identify the encrypted secrets that correspond to data blocks in its cache and use those data blocks to recover those secrets. The client may then encrypt a message for the server using the recovered secrets. Upon reception of the message, the server may then recover the message using its knowledge of the data blocks cached at the client.
The invention relates to a method for synchronizing RF antenna signals (5a to 5i) of a plurality of RF antenna sites (3a to 3i) arranged at different locations of a radio transmission system (1b), the method comprising; generating a reference signal (7) in a reference oscillator (6) located at a central unit (2) of the radio transmission system (1b), transmitting the reference signal (7) as an optical signal from the central unit (2) to the RF antenna sites (3a to 3i) via a plurality of optical fiber links (9a″ to 9i″), and using the transmitted reference signal (7) for synchronizing the RF antenna signals (5a to 5i) of the different RF antenna sites (3a to 3i), The invention also relates to a radio transmission system (1b).
A system and method for frequency diversity uses interleaving in a wireless communication system utilizing orthogonal frequency division multiplexing (OFDM) with various FFT sizes. Subcarriers of one or more interlaces are interleaved in a bit reversal fashion and the one or more interlaces are interleaved.
Aspects describe utilizing a dedicated reference signal for supporting Network MIMO, distributed MIMO, Coordinated MultiPoint, and the like. A data modulation symbol is transmitting in the same direction as a pilot modulation symbol is transmitted. Two or more wireless devices can coordinate communications such that transmission of the same pilot modulation symbol and the same data modulation symbol are transmitted to a device in different directions, each direction associated with a wireless device and intended for a particular mobile device. Cluster-specific scrambling and/or user-group specific scrambling can be employed and a scrambling code can be communicated prior to transmission of the pilot modulation symbols and data modulation symbols.
Methods, apparatus and computer program products are provided for defining the HARQ functionality for primary and secondary cells having different TDD UL/DL subframe configurations so as to reduce or eliminate instances in which the feedback is blocked and the UL grant is missed. For example, a method is provided that includes providing for communications via a primary cell and at least one secondary cell in a time division duplex (TDD) network that supports carrier aggregation in accordance with different TDD uplink (UL)/downlink (DL) subframe configurations. In this example, the method also defines at least one of: (i) UL or DL hybrid automatic repeat request (HARQ) timing, (ii) a maximum number of DL HARQ processes, (iii) a number of UL HARQ processes or (iv) an UL HARQ process mapping to be the same for each of the primary and secondary cells having different TDD UL/DL subframe configurations.
Provided are methods and apparatuses for a user equipment to decode over a first set of resources a Physical Downlink Control CHannel (PDCCH) of a first type and to decode over a second set of resources a PDCCH of a second type in a same transmission time interval, to perform a first search process for candidate PDCCHs of the first type over a first set of resources and to perform a second search process for candidate PDCCHs of the second type over a second set of resources, and to determine whether to include for data reception resources that are separately indicated for potential transmission of PDCCHs of the first or of the second type.
The present application discloses a method for monitoring performance in a telecommunication system. The method comprises receiving transmitter observation receiver data from a transmission link; down-converting the transmitter observation receiver data to time-divisionally acquire a signal band, a high adjacent band and a low adjacent band of the transmitter observation receiver data; and calculating adjacent channel leakage ratio from power of the signal band, the high adjacent band and the low adjacent band of the transmitter observation receiver data. The present application also discloses an apparatus for monitoring performance and a remote radio unit including the same.
A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for transmitting broadcast signals comprises an encoder for encoding Data Pipe (DP) data corresponding to each of a plurality of DPs, wherein each of a plurality of DPs carries at least one service component, a mapper for mapping the encoded DP data onto constellations, a time interleaver for time interleaving (TI) the mapped DP data at DP level by skipping cells having zero values of the DP data, a frame builder for building at least one signal frame including the time interleaved DP data, a modulator for modulating data in the built at least one signal frame by an Orthogonal Frequency Division Multiplex (OFDM) scheme and a transmitter for transmitting the broadcast signals having the modulated data.
A transmitter, using frequency sub-band coding, can output a plurality of narrowcast and/or broadcast signals to a plurality of sub-groups or nodes along a single optical link. The transmitter can output the plurality of signals as multiple slices of spectrum, wherein each slice of spectrum is designated for a particular sub-group or node. The transmitter can further instruct each receiver or node as to which slice of spectrum to use and at which frequency to output the associated signal information to its intended subscribers. Thus, a single transmitter can feed narrowcast information to multiple nodes or receivers along a single optical link. In embodiments, channels can be monitored and manipulated on a channel-by-channel basis, and channels delivered using different network solutions can be combined.
A method for determining the place of origin of a passive intermodulation product excites a distributed device under test with two first excitation signals (x1(t), x2(t), each with a single spectral line, of which the frequencies (f1, f2) provide a frequency spacing relative to one another. Following this, the phase (φIM3Meas) of a first passive intermodulation product generated at the place of origin in the distributed device under test from the first excitation signals ((x1(t), x2(t)) by nonlinear distortion is measured, and the delay time of the first passive intermodulation product from the place of origin to the measuring device is calculated from the measured phase (x1(t), x2(t)) and the frequency (2·f1−f2) of the first passive intermodulation product. Finally, the place of origin of the passive intermodulation product is determined from the delay time and the topology of the distributed device under test.
The present disclosure describes systems and methods for beam wavelength stabilization and output beam combining in dense wavelength multiplexing (DWM) systems. Systems and methods are described for performing beam wavelength stabilization and output beam combining in DWM systems while achieving increased wall-plug efficiency and enhanced beam quality. Interferometric external resonator configurations can be used to greatly increase the brightness of DWM system output beams by stabilizing the wavelengths of the beams emitted by the emitters of the DWM laser source. The resonant cavities described by the present disclosure provide advantages over the prior art in the form of decreased cost, increased wall plug efficiency and increased output beam quality. Particular implementations of the disclosure achieve increased wall plug efficiency and increased output beam quality through a combination of innovative cavity designs and the utilization of reflection diffraction elements for beam combining.
Disclosed is an optical transceiver which includes an optical transmitter converting a first electrical signal into a first optical signal, an optical receiver converting a second optical signal into a second electrical signal, and a processing unit operatively coupled to the optical transmitter and the optical receiver. The processing unit is configured to obtain first wavelength information of the first optical signal and second wavelength information of the second optical signal and compare the first wavelength information and the second wavelength information to control a wavelength separation interval between the first optical signal and the second optical signal.
A protection path providing method is used in a network that includes a shared section in which a first protection path corresponding to a first work path to transmit a first traffic and a second protection path corresponding to a second work path to transmit a second traffic are configured. The method includes: transmitting a message that includes information indicating a transmission rate of the first work path via a logical ring, the logical ring being formed using a route for which the first work path is configured and a route for which the first protection path is configured, when a failure is detected in the first work path; and controlling a switch circuit installed in a transmission device provided at an end of the shared section in accordance with the message in such a manner as to transmit the first traffic via the shared section.
The present invention provides a method for determining a precoding matrix indicator, user equipment, and a base station. The method includes: receiving a first reference signal set sent by a base station; determining, based on the first reference signal set, one or more intermediate matrices, and reporting, to the base station, a first index used to indicate the intermediate matrix; receiving a second reference signal set sent by the base station; and determining, based on the second reference signal set, a precoding matrix, and reporting, to the base station, a precoding matrix indicator used to indicate the precoding matrix, where the precoding matrix is a product W of two matrices W1 and W2, and W=W1W2, where W1 is a block diagonal matrix, W1=diag{X1,X2}. In this way, transmission performance of an active antenna system can be improved.
A communications device is provided including a transmitter unit configured to transmit at least two transmit signals via a transmission channel; a precoder unit configured to beamform the transmit signals based on a precode matrix that is adapted to reduce a signal level at at least one location in an area of the transmission channel; and an amplifier adapted to amplify at least one of the transmit signals to a value that results in a signal level at the at least one location that is below a predetermined signal level. A corresponding method for transmitting at least two parallel transmit signals is provided as well.
To provide a power feeding system and the like with which charging can be performed without a decrease in the power supply efficiency. To provide a power feeding system and the like with which can offer a power feeding service which is efficient to both a power feeding user and a power feeding provider. The power transmission state in each of power transmitting portions is monitored, the power transmitting portion having the highest power transmission efficiency is selected based on positional advantage, and the power transmitting resonance coil included in the selected power transmitting portion is kept at a first resonance frequency, whereby power transmission continues. The resonance frequency of the power transmitting resonance coil included in the non-selected power transmitting portion (the number of the non-selected power transmitting portions may be plural) is set to a second resonance frequency, whereby power transmission is stopped.
Provided is an information processing apparatus including an IC module that performs communication with an external apparatus, a detection unit that detects an electric wave, a timer that measures a time course after being started, a power supply unit that supplies a power source to the IC module, and a control unit that controls a supply amount of the power source based on a detection result of the electric wave and a determination result of a value of the timer. The control unit starts the timer after terminating communication with the external apparatus, restarts the timer every time a transmission start of an electric wave is detected, in response to detection of an electric wave received from an outside at a predetermined interval in the detection unit.
Systems and methods for reducing interference caused by leakage of signals generated by a spread spectrum phase lock loop (SS PLL). The system and method uses a sinusoidal spreading signal to spread the output of a SS PLL. A notch filter tracks the frequency of the output of the SS PLL to steer the notch in the filter to the instantaneous frequency output from the SS PLL, thus allowing the notch filter to be placed in the path of signals that have unwanted leakage from the SS PLL.
Implementations of radio frequency switch controllers within the scope of the appended claims are configured to reduce the impact of the clock signal induced spurs. In particular, implementations of switch controllers described herein include a poly-phase clocking scheme, as opposed to a single phase to clock the charge pump stages of an negative voltage generator. In some implementations poly-phase clocking schemes reduce the clock signal induced spurs and may preclude the need for additional on-chip or off-chip decoupling capacitors that add to the cost and physical size of a complete front end module solution.
Systems, methods, and other embodiments associated with LDPC decoder architectures are described. According to one embodiment, a method includes decoding codeword bits with a high throughput LDPC decoder and when the decoding of the codeword bits with the high throughput LDPC decoder is unsuccessful, decoding the codeword bits with a low throughput LDPC decoder.
Methods, techniques, systems and apparatuses for utilizing reserved space for error correcting functionality. A cache line (“reserved line”) in a plurality of cache lines to store error correcting code (ECC) data is utilized for storing ECC data corresponding to other cache lines within the plurality of cache lines when a memory device has failed.
A digital-to-analog converting (DAC) circuit is utilized for converting a 1-bit stream into an analog output signal. The DAC includes an N-bit encoder, a multiplexer, a low-pass filter, and a digital-to-analog conversion circuit. The N-bit encoder is utilized for receiving the 1-bit stream and encoding the 1-bit stream to generate an N-bit stream, where N is larger than 1; the multiplexer is utilized for selectively outputting the N-bit stream or a zero signal as an output signal according to a selection signal; the low-pass filter is utilized to generate a filtered output signal according to the output signal; and the digital to analog conversion circuit is utilized to generate the analog output signal according to the filtered output signal.
A system for converting several analog signals to digital signals using a single analog to digital converter. Each of the analog signals is encoded, using multiplication, with a different binary code, and the encoded analog signals are summed, and converted to digital form by an analog to digital converter. Multiple digital data streams are then formed from the digital output stream produced by the analog to digital converter, by forming correlations of the digital output stream with each of the binary codes.
A digitally controlled oscillator (DCO) modulation apparatus and method provides a wideband phase-modulated signal output. An exemplary modulator circuit uses an oscillator in a phase-locked loop. The circuit receives a wrapped-phase input signal, unwraps the wrapped-phase input signal to generate an unwrapped-phase signal, and differentiates the unwrapped-phase signal. The wrapped-phase input signal and the differentiated unwrapped-phase signal are both injected into a feedback loop of the modulator circuit. The feedback loop may include a multi-modulus frequency divider with a frequency divisor that is temporarily incremented or decremented to cancel out abrupt phase jumps associated with the wrapped-phase to unwrapped-phase conversion.
A programmable logic device having a small layout area even with an increasing circuit scale. The programmable logic device includes first programmable logic elements (PLEs); a second PLE; first wirings to which a signal including configuration data is supplied in a first period and which are electrically connected to respective output terminals of the first PLEs in a second period; a second wiring electrically connected to an input terminal of the second PLE; and circuits each connected to the corresponding first wiring. Each of the circuits includes at least a first switch, a second switch, and a third switch. An on/off state of the second switch depends on a potential of a node to which the signal is supplied from the corresponding first wiring through the first switch. The second switch and the third switch control an electrical connection between the corresponding first wiring and the second wiring.
A charge pump assist circuit to assist a voltage level shifter to toggle an output based on an input. The charge pump assist circuit may be implemented to toggle the output at a higher rate than the voltage level shifter. The voltage level shifter may be biased with an undivided voltage rail, such as an operating voltage of the charge pump assist circuit, rather than a divided voltage rail, while maintaining or increasing a toggle rate. The charge pump assist circuit may include a non-overlapping control generator to generate non-overlapping differential controls, and may further include first and second charge pump multipliers to increase voltages of the differential controls by a multiple of the operating voltage.
A practical, limited pulse train EMP source, with unitary or phased up capability, reliant on electrical pulse power systems integrated with low timing jitter switching, transformation lines and impedance matched antenna to generate an intense electromagnetic pulse train.
A clock signal generation circuit includes a CR oscillator circuit having a capacitor, a resistor, and an amplifier circuit, and a voltage generation circuit adapted to generate a power supply voltage, and then supply the CR oscillator circuit 170 with the power supply voltage VDOS. An oscillation frequency of the CR oscillator circuit in a case in which a power supply voltage VDDL is a fixed voltage has a positive temperature characteristic. The voltage generation circuit generates the power supply voltage VDOS having a negative temperature characteristic based on a work function difference between transistors, and then supplies the power supply voltage VDOS as a power of the amplifier circuit of the CR oscillator circuit.
A micro-electrical-mechanical system (MEMS) vibrating structure includes a carrier substrate, a first anchor, a second anchor, a single crystal piezoelectric body, and a conducting layer. The first anchor and the second anchor are provided on the surface of the carrier substrate. The single-crystal piezoelectric body is suspended between the first anchor and the second anchor, and includes a uniform crystalline orientation defined by a set of Euler angles. The single-crystal piezoelectric body includes a first surface parallel to and facing the surface of the carrier substrate on which the first anchor and the second anchor are formed and a second surface opposite the first surface. The conducting layer is inter-digitally dispersed, and is formed on the second surface of the single-crystal piezoelectric body. The first surface of the single-crystal piezoelectric body is left exposed.
An input audio signal is equalized to form an output audio signal on the basis of an intended listening sound pressure level, the output capabilities of a particular playback device, and unique hearing characteristics of a listener. An intended listening level is first determined based on the properties of the audio signal and a mastering sound level. The intended listening level is used to determine an optimal sound pressure level for the particular playback device based on its capabilities and any master volume gain. These two levels are used to determine how much louder to make individual frequencies based on data pertaining to human auditory perception, either standardized or directly measured. The audio is further compensated on the basis of hearing loss data, again either standardized or directly measured, after optionally extending the signal bandwidth. The final, compensated audio signal is sent to the playback device for playback.
In one embodiment a chopper-stabilized amplifier may be formed to include a symmetrical passive RC notch filter having two cut-off frequencies. In an embodiment, the chopper stabilized amplifier may use only two clock signals to control the chopping operations.
An electronic device may include an antenna, a transceiver, and a low noise amplifier module that amplifies receive signals from the antenna to the transceiver circuitry in a first configuration and passes transmit signals from the transceiver to the antenna in a second configuration. The low noise amplifier module may include a first switching circuit coupled to the antenna, a second switching circuit coupled to the transceiver, at least one low noise amplifier coupled between the first and second switching circuits, and a transmit bypass path coupled between the first and second switching circuits. The transceiver may be located in a first electronic device region, whereas the low noise amplifier module and the antenna may be located in a second region. The low noise amplifier module may help compensate for signal loss between the first and second regions and allow for transmit signals to pass to the antenna.
Apparatus and methods for power amplifier output matching is provided. In certain configurations, an output matching circuit includes a supply voltage biasing circuit electrically connected between an input node and a power high supply voltage, a second-order harmonic series resonant circuit electrically connected between the input node and a power low supply voltage, a third-order harmonic parallel resonant circuit electrically connected between the input node and a harmonic frequency grounding node, a third-order harmonic series resonant circuit electrically connected between the harmonic frequency grounding node and the power low supply voltage, and a DC blocking capacitor electrically connected between the harmonic frequency grounding node and an output node.
Radio frequency (RF) amplification devices are disclosed that include Doherty amplification circuits and control circuits along with methods of operating the same. In one embodiment, the Doherty amplification circuit includes a quadrature coupler having an isolation port and a tunable impedance load coupled to the isolation port and configured to provide a tunable impedance. The control circuit is configured to tune the tunable impedance of the tunable impedance load at the isolation port dynamically as a function of the RF power of the Doherty amplification circuit. In this manner, the control circuit can provide dynamic load modulation, thereby increasing the power efficiency of the Doherty amplification circuit, particularly at backed-off power levels. The load modulation provided by the control circuit also allows the Doherty amplification circuit to provide broadband amplification in various RF communication bands.
The invention comprises: a structure (3) supporting at least one refraction-based concentration element (1) and at least one collector (2) positioned parallel to one another; and first actuation means operatively connected so as to pivot the structure in relation to a base (4) about a first axis (E1) parallel to the concentration element and to the collector, in order to track a relative movement of the sun. The concentration element is fixed in a stationary position on the structure and the collector is supported in said structure by at least two rocker arms (5) positioned parallel to one another and connected at the ends thereof to form an articulated quadrilateral mechanism. In addition, second actuation means are operatively connected so as to pivot the arms in relation to the structure about respective second axes (E2) adjacent to the concentration element and perpendicular to the first axis, so that the collector can at any time be positioned at a maximum concentration point.
A device may detect the zero-cross event of a BEMF of an electric motor with first, second, and third phase windings driven by respective first, second, and third power driving stages. The device may include a control circuit configured to place at an impedance state the third power driving stage relative to the third phase winding, the third phase winding being coupled to a zero-cross detecting circuit, introduce a masking signal to mask an output signal of the zero-cross detecting circuit in correspondence with each rising edge of a first driving signal of the first power driving stage relative to the first phase winding, and determine whether a first duty-cycle of the first driving signal is such that a duration of a masking window of the masking signal is greater than an on-time period of the first driving signal.
An inverter and a method for operating the inverter. In one instance, a pulse-controlled inverter comprises multiple phase systems. Each of the phase systems has an outer conductor and at least one semiconductor component, and a temperature monitoring device that has multiple temperature sensors which sense the temperature of at least one part of at least one of the phase systems. In said method, a temperature gradient is determined from each of the sensed temperatures, the difference of the determined temperature gradients from an estimated gradient value is ascertained, and if the difference exceeds a threshold value, a fault of the inverter is identified.
Provided is a received power conversion device for a resonant wireless charging system, including a wireless power receiver for receiving wireless power from a wireless power transmission device, a rectifier for rectifying power in an Alternating Current (AC) form received in the wireless power receiver into a Direct Current (DC), a free-wheeling switching unit for switching according to a switching control signal to form a path for free-wheeling the power in the AC form, a feedback circuit fed back with an output signal of a corresponding power conversion device to detect a level of the output signal, and a controller for controlling switching of the free-wheeling switching unit according to the output level detected by the feedback circuit.
A power transmitting apparatus for digitally controlling voltage and current of alternating current (AC) includes an input part, an output part, and a digital control part. The input part has a filtering protection module and a semiconductor switch module connected to the filtering protection module. The filtering protection module has an input interface for inputting an AC signal from a power source. The output part has a filtering module and a voltage and current feedback module connected to the filtering module. The voltage and current feedback module has an output interface for outputting the AC signal from the input part. The filtering module is connected to the semiconductor switch module of input part. The digital control part has a microcontroller unit (MCU) electrically connected to the filtering protection module, the semiconductor switch module, and the voltage and current feedback module, respectively.
A controller of a switching power converter includes a voltage protection circuit that generates a modified supply voltage that does not exceed a predetermined threshold voltage to power one or more components of the controller.
The disclosed embodiments provide an AC/DC power converter that converts an AC input voltage into a DC output voltage. This AC/DC power converter includes an input rectifier stage which rectifies an AC input voltage into a first rectified voltage. The AC/DC power converter also includes a switching resonant stage which is directly coupled to the output of the input rectifier stage. The switching resonant stage converts the rectified voltage into a first high frequency AC voltage of a first amplitude. This AC/DC power converter additionally includes a transformer which is coupled to the output of the switching resonant stage and is configured to down-convert the first high frequency AC voltage into a second high frequency AC voltage of a second amplitude. Furthermore, the AC/DC power converter includes an output rectifier stage which is coupled to the output of the transformer, wherein the output rectifier stage rectifies the second high frequency AC voltage into a DC output voltage.
Disclosed herein are control apparatus, switching power supply, and control method embodiments for maintaining power conversion efficiency. An embodiment operates by determining whether or not a current of an inductor of the switching power supply has become less than or equal to a predetermined value, controlling a reference voltage based on at least one of a result of the determining or a result of comparing a voltage according to an output voltage of the switching power supply and the reference voltage, and pausing switching of the switching power supply based on the reference voltage.
In one embodiment, a power factor correction (PFC) circuit can include: (i) a rectifier bridge and a PFC converter coupled to an input capacitor; (ii) a harmonic wave compensation circuit configured to shift a phase of a DC input voltage provided from the rectifier bridge, where the harmonic wave compensation circuit comprises a phase of about −45° when a corner frequency is about 50 Hz; and (iii) a PFC control circuit configured to control the PFC converter, where the PFC control circuit comprises a first sampling voltage, and the harmonic wave compensation circuit is configured to control a phase of the first sampling voltage to lag a phase of the DC input voltage by about 45°.
A battery protection device for protecting a battery (1;41) comprises an electrical circuit arranged to generate or suppress a ripple current through said battery. Said electrical circuit comprises a ripple generator arranged to produce an electrical ripple current, a first ripple injector (21;48) to be arranged on a positive power line to the battery, said first ripple injector being arranged to transfer said electrical ripple current to said positive power line, and a second ripple injector (22;49) to be arranged on a negative power line to the battery. Said second ripple injector is arranged to transfer said electrical ripple current to said negative power line. Said first and second ripple injector are arranged to operate in a differential mode, e.g. opposite sign on injected current.
A power tool includes a housing, a brushless motor, and a cover member. The housing has an air intake hole and an air exhaust hole formed therein, the housing having an inner surface. The brushless motor has an outer surface disposed in the housing, a first endface near the air intake hole, and a second endface near the air exhaust hole. The cover member covers at least one of the first endface and the second endface for preventing dust from entering the brushless motor. The inner surface of the housing and outer surface of the brushless motor define a circulation path providing communication between the air intake hole and the air exhaust hole.
A rotor for an outer rotor-type motor is provided. The rotor includes a metallic coupler and a polymeric frame molded over at least part of the metallic coupler.
An electric power steering electric motor apparatus includes: an electric motor including: a motor housing; a stator; a rotor; and a power supplying portion that supplies electric power to the stator; and a controlling unit including: a driving circuit that supplies electric power to the electric motor; a connecting portion; a controlling circuit; and a case that covers the driving circuit and the controlling circuit, the electric motor and the controlling unit being mounted coaxially onto a gear housing that reduces rotational speed of the electric motor so as to position the controlling unit on a side near the gear housing, and the connecting portion being connected to the power supplying portion inside the case through an opening portion formed on the case, and being positioned and held by an insulating member so as to be insulated from the case and the motor housing.
Disclosed is a spherical wheel motor including: a spherical rotor having freedom of rotation along surrounding magnetized directions; a stator formed in a dome shape enclosing the rotor and configured to form magnetization at various angles through a plurality of coils distributed therein, and impart the freedom of rotation to the rotor; and a driving unit configured to identify a position of the rotor, supply current to each coil of the stator according to the position of the rotor, and drive the rotor.
A device for connecting an energy-converting terminal to an electric power supply network and for exchanging data via the power supply network, a network connection for connecting to the power supply network, a communications unit for receiving and sending data over the power supply network, a logic unit for controlling the data exchange and for controlling or regulating the power of the energy-converting terminal, sensors and an associated signal processing unit for monitoring the energy-converting terminal, as well as a power section for controlling the energy flow to the energy-converting terminal are provided. The network connection, the communications unit, the logic unit, a sensor unit having sensors and the signal processing unit associated with the sensors and the power section are combined in an application-specific integrated circuit (ASIC). A corresponding method is also described.
A power supply unit for supplying power to a device has a rechargeable, main battery; a charging arrangement for charging the main battery; a non-rechargeable back-up battery; load terminals for connection to a load; and a control unit for controlling supply of power to the load primarily from the main battery and secondarily from the back-up battery. The device is, in particular, a single bay, stand alone parking meter. In the event that the main battery runs low, the control unit is configured to supply power to the load from both the main battery and the back-up battery or only from the back-up battery. The back-up battery is easily replaceable, and the power supply unit has a bay, with connectors for receiving the back-up battery. The main battery is charged from solar panels. A communication device is provided to communicate status messages wirelessly to a control system.
A method comprising supplying current to charging elements, a charging element producing a configurable magnetic field polarity, magnetic field polarities produced by the charging elements according to a charging polarity code. The method determines a relative position between a receiving element and a charging element, receiving elements fixedly electrically connected according to the charging polarity code, responsive to determining, re-configuring a magnetic field polarity of one or more of the charging elements due to movement of the receiving elements relative to the charging elements, and inducing a charging current by the charging elements in the receiving elements to increase power transfer from the charging elements to the receiving elements.
An apparatus configured to transmit power, and transceive data, using mutual resonance, includes a power transmitter configured to wirelessly transmit power to a device, using a power transmission frequency as a resonant frequency. The apparatus further includes a communication unit configured to transceive data to and from the device, using a communication frequency as a resonant frequency. The apparatus further includes a controller configured to determine a charging state of the device based on the data received from the device, and control an amount of the power based on the charging state.
A parallel operation control method for different type power generation apparatuses to shift the power generation apparatuses having respective different drooping characteristics, in which the drooping characteristic is defined as a characteristic of decrease of a rated frequency along with an increase of a load, from independent operation of the power generation apparatuses under suitable drooping characteristics to parallel operation thereof to drive a common drive target, includes determining a load of one of the power generation apparatuses by subtracting a load of the other of the power generation apparatuses from a predetermined required load; changing a drooping characteristic of the one of the power generation apparatuses so as to coincide with a drooping characteristic of the other of the power generation apparatuses; and controlling the one of the power generation apparatuses so as to maintain frequency at the time of changing the drooping characteristic.
An apparatus and a method for power supply are provided. In the invention, the residual standby power can be quickly discharged by an additional fast discharging unit within a predetermined time when an external AC power (for example, city power) received by the power supply apparatus capable of supporting ATX (Advanced Technology eXtended) specification is unavailable (for example, power trip). Accordingly, any host system applied with the inventive power supply apparatus and method would not be inoperable when the received external AC power (city power) is recovered, and thus effectively promoting the stability of the applied host system.
An electric power control section includes: a temperature detecting section for detecting temperatures of a battery; and an accumulation counter for accumulating numerical values assigned to the respective temperatures of the battery which have been detected by the temperature detecting section. The electric power control section reduces electric power supply to an LCD display section when an accumulated value obtained by the accumulation counter exceeds a preset value.
Aspects of a protection circuit and method are disclosed. A transmit circuit generates a power transmit signal for powering the transmit antenna to generate a wireless field sufficient for wirelessly charging a device. A detection circuit senses a strength of an electromagnetic field received by the transmit antenna and further configured to generate an sense signal indicating the strength of the electromagnetic field received by the transmit antenna. A power control circuit controls a switch based at least partly on the sense signal. The power control circuit can attenuate an electrical coupling between the transmit antenna and the transmit circuit such that the received electromagnetic field is inhibited from damaging the transmit antenna or the transmit circuit.
A wiring device is for a junction assembly. The junction assembly includes a housing. The wiring device includes a body at least partially extending into the housing, and at least one mounting member coupled to the body and including a number of protrusions extending away from the body. The mounting member moves between an extended position and a retracted position. When the mounting member is in the extended position, the mounting member maintains the body in a predetermined position with respect to the housing. Responsive to the mounting member moving from the extended position toward the retracted position, the protrusions move toward the body, thereby releasing the body from the housing.
A power transmission assembly includes a first main bus including a first large bus bar and a first small bus bar. The first large bus bar is defined by a cross-sectional area larger than the first small bus bar. The first main bus defines a first axis passing through the first large bus bar and the second small bus bar. The power transmission assembly includes a second main bus including a second large bus bar and a second small bus bar. The second main bus defines a second axis passing through the second large bus bar and the second small bus bar, the second axis being substantially parallel to the first axis. The first main bus is located along a third axis substantially perpendicular to the first axis and passing through each of the first main bus and the second main bus.
A spark plug for an internal combustion engine, including: a center electrode having a first noble metal pin of a first diameter mounted thereon, and a ground electrode having a second noble metal pin of a second diameter mounted thereon, the noble metal pins of the center electrode and of the ground electrode being mutually opposed at the end faces thereof; and the first diameter of the first noble metal pin of the center electrode being larger than the second diameter of the second noble metal pin of the ground electrode.
Provided is a waveguide element, including: a waveguide for guiding an electromagnetic wave; a resonance antenna for radiating or receiving the electromagnetic wave, the resonance antenna being arranged at a part of the waveguide for radiating or receiving the electromagnetic wave; and an impedance matching portion for matching an impedance of the waveguide with an impedance of the resonance antenna so as to couple the waveguide to the resonance antenna. The waveguide includes: a first conductor layer and a second conductor layer each having a negative dielectric constant real part for the electromagnetic wave; and a core layer arranged between the first conductor layer and the second conductor layer. The core layer has one of a gain of the electromagnetic wave and nonlinearity of carriers for the electromagnetic wave.
A beam combiner may include source elements, each configured to output a beam of light locked at a center wavelength different from center wavelengths of other source elements. The beam combiner may include a dispersive element configured to combine the beams of light into a combined beam, and a beam separator configured to separate the combined beam into an output beam and a locking beam. The beam combiner may include a spatial filter configured to prevent crosstalk within the locking beam, and to redirect the locking beam to the source elements. The dispersive element may be configured to disperse the locking beam into constituent wavelength beams. Each constituent wavelength beam may be directed to a respective one of the source elements for locking that source element at its center wavelength, and may correspond in wavelength to the center wavelength of the respective source element.
This disclosure demonstrates successfully using single, polycrystalline, hot pressed ceramic, and thin film Fe doped binary chalcogenides (such as ZnSe and ZnS) as saturable absorbing passive Q-switches. The method of producing polycrystalline ZnSe(S) yields fairly uniform distribution of dopant, large coefficients of absorption (5-50 cm−1) and low passive losses while being highly cost effective and easy to reproduce. Using these Fe2+:ZnSe crystals, stable Q-switched output was achieved with a low threshold and the best cavity configuration yielded 13 mJ/pulse single mode Q-switched output and 85 mJ in a multipulse regime.
Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.
An electrical device can have an associated wiring box for connecting the electrical device to an external electrical supply, for example to utility power. The wiring box can include an opening suitable for worker access, so that a worker can connect or disconnect the electrical device from electrical power. Wiring connectors can be rotatably mounted in the wiring box for making the electrical connection. The wiring connectors can be rotated to one orientation to enhance worker access through the opening, for example during installation, and to another orientation for long-term operation.
Solar Photovoltaic utility meter adapter is disclosed. The adapter redirects power from a photovoltaic connection directly back to the power grid while still being monitored by the existing utility meter and abiding NEC code rules. This operates to resolve the limitations of busbar amperage rating and heat. The adapter connects to existing electrical connections of an electrical service on a building on one side, and connects to the utility meter on the other side. Busbars inside the adapter receive power from the photovoltaic device, through an overcurrent protecting device. The device is connected in a first configuration with the connection part oriented in a first direction, said busbars connect to load connections of said electrical service, and in a second configuration with said connection part oriented in a second direction opposite to said first direction, said busbars connect to source connections of said electrical service.
A locking portion formed by bending is provided at a free end portion of a cantilever-like spring piece extending from a shell body on the outer side of a receptacle connector and folded back outward. The locking portion protrudes into the shell body through a hole of the shell body. Then, a sheared surface, formed by press working, of the locking portion is brought into contact with a plug connector fitted into the shell body, thereby obtaining a friction lock between the receptacle connector and the plug connector.
A connector is provided for memory card including an insertion module of an overall right-angle parallelepipedal shape. The insertion module includes an insertion slot for inserting a memory card. The connector furthermore includes several static electricity discharge zones coming into contact with a portion of a surface of a memory card upon the insertion of the memory card into the memory card connector. Each of the static electricity discharge zones is made at least in part of a conducting plastic material having a different surface resistance value, so that the discharge of the card is effected progressively in several phases.
A lever-operative connector which can be downsized includes a frame and a lever rotatably coupled to the frame. The frame has a circumferential wall having one opening and the other opening at both ends. The frame has a notch formed in the circumferential wall and communicating with the one opening. When the lever is rotated toward the one opening side, a part of a lever side wall is exposed from an interior of the circumferential wall so as to compensate the notch of the circumferential wall, thereby forming, together with the frame, a hood having the housing-receiving width. When the lever is rotated toward the other opening side, the part of the lever side wall is received inside the circumferential wall so as to open the notch of the circumferential wall, thereby eliminating the housing-receiving width and the hood.
The invention relates to a plug type connector, a counter-connector and a plug type connector arrangement. In order to protect a contact position (P) of the plug type connector against undesirable displacement relative to the counter-connector of the plug type connector arrangement, without undesirable forces occurring, there is provision according to the invention for the plug type connector and the counter-connector to have clamping faces which extend transversely relative to a connection direction (V) and which are clamped to each other via a fixing means.
The invention provides a submersible or harsh environment connector for use with electrical, optical or electro-optical cables having first and second connector units which are releasably mateable and that are not pressure compensated. The invention provides a wet-mate without pressure balancing system for making a subsea wet-mate connection. The invention uses a reservoir of fluid and a mechanism energized by mating, such as by a spring, to push that fluid into a small mated connection, discharging an equivalent volume of seawater and creating electrical and/or optical continuity. One-way or back-flow prevent valves ensure there is no return flow of seawater. Typical fluids would be dielectric oil or optical gel.
A two sealant two-phase wire connector having sequential sealant interfaces for preventing an electrical failure through interactive sealant sharing between a twist-on electrical wire connector having a spiral cavity containing a first waterproof sealant which is immersed in a tube that contains a second water proof sealant, wherein the first water proof sealant and the second water proof sealant each form an interface that shields an electrical connection from the environment.
A connector is connectable with a plate-like or sheet-like object having an upper surface and a lower surface in an up-down direction. The upper surface is formed with an upper signal line. The lower surface is formed with a lower signal line. The connector comprises a first terminal, a second terminal, an insulator member and a housing. The first terminal has an upper-jaw portion and a lower-jaw portion. The upper-jaw portion is provided with an upper contact point. The lower-jaw portion is provided with a lower receiving portion. The second terminal is provided with a lower contact point and a press portion. When the object is connected to the connector, the insulator member is sandwiched between the press portion and the lower receiving portion to insulate the first terminal and the second terminal from each other. When the object is connected to the connector, the upper-jaw portion presses the upper contact point against the upper signal line so that the lower signal line presses the lower contact point downward while the press portion presses the insulator member against the lower receiving portion.
A coaxial connector device includes a connector bank with closely arranged installation connectors; a male connector including a screw-on section defining a first circumferential surface of a first outer diameter, a cable receiving section defining a second circumferential surface of a second outer diameter, and a tightening section axially located between the screw-on and the cable receiving section; a cable having an end extended through the male connector to electrically connect to one of the installation connectors; and a female connector connected to another end of the cable. The tightening section defines multiple grip sides, which are respectively located tangentially relative to the second circumferential surface with two lateral edges flush with the first circumferential surface, giving the tightening section a reduced size. Therefore, multiple male connectors can be conveniently screwed onto the closely arranged installation connectors while the fully assembled coaxial connector device can have an effectively reduced volume.
The invention provides a reciprocal circular polarization selective surface (CPSS) formed of two mutually orthogonal arrays of linear dipoles disposed at opposite transverse CPSS faces, with opposing orthogonal dipoles individually connected by transmission lines, wherein adjacent dipoles are endwise coupled for enhancing CPSS performance. In one implementation, the CPSS comprises a two-dimensional array of cells with each cell composed of two separate crankwires positioned at two diagonally opposite corners of the cell so that the cell has a 2-fold rotational symmetry and endwise coupling of adjacent crankwires for enhanced performance at normal and oblique angles of incidence.
Provided is an electronic apparatus including a casing that is formed of a non-conductive material and is configured such that a hole is formed in a part of the casing, an antenna element that is formed on an outer surface of the casing, a logo mark that is configured such that at least a part thereof is formed of a conductor to be disposed to cover the hole of the casing, a part of a conductor portion comes into contact with the antenna element, and another part of the conductor portion is exposed to the hole of the casing, and a feeding wire that is connected to the logo mark through the hole formed in the casing.
A narrowband filter tuned at a center frequency. The filter comprises an input terminal, an output terminal, and a plurality of resonators coupled in cascade between the input terminal and the output terminal. Each of the resonators is tuned at a resonant frequency substantially equal to the center frequency. The resonant frequencies of a primary set of the resonators and a secondary set of the resonators are of different orders.
The present invention relates to a non-aqueous electrolyte additive that allows for improved safety and battery characteristics of a non-aqueous electrolyte secondary battery, and in greater detail, the present invention relates to a non-aqueous electrolyte additive that includes a phosphazene compound represented by the following general formula (1): (NPR2)n (1) wherein each R independently represents fluorine or a secondary or tertiary branched alkoxy group substituted with fluorine, at least one of the Rs represents the secondary or tertiary branched alkoxy group substituted with fluorine, and n is from 3 to 14.
An electrolyte composition and catalyst ink, a solid electrolyte membrane formed by printing the electrolyte composition and catalyst ink, and a secondary battery including the solid electrolyte membrane. An electrolyte composition includes a solvent; a lithium salt dissolved in the solvent; and a cycloolefin-based monomer dissolved or dispersed in the solvent and a catalyst ink includes a catalyst that promotes the ring-opening and polymerization reactions of the cycloolefin monomers of the electrolyte composition.
A positive electrode active material is provided to contain: a solid solution lithium-containing transition metal oxide (A) represented by Li1.5[NiaCobMnc[Li]d]O3 (where a, b, c and d satisfy the relations of 0.1≦d≦0.4, a+b+c+d=1.5, and 1.1≦a+b+c≦1.4.); and a lithium-containing transition metal oxide (B) represented by Li1.0Nia′Cob′Mnc′O2 (where a′, b′ and c′ satisfy the relation of a′+b′+c′=1.0.).
A method is described to prepare a cathode material for high energy density rechargeable lithium ion batteries based on H2V3O8 with improved cycling stability by means of a surface modification produced at low temperature in aqueous media. The battery comprises a stack composed by an anode, an electrolytic layer, a separator and a cathode, whose material is based on a mixture of carbon black LixH2-xV3O8 modified by an aluminum hydroxide coating achieved in a one pot multistep reaction using aluminum in an amount comprised between 0.5 wt % and 10 wt %.
A lithium ion battery cathode material, and an electrode prepared from such material, is described. The cathode material has a layered-spinel composite structure. The lithium ion battery operates at a high voltage (i.e. up to about 5 V) and has a desirably high cycling performance and rate capability.
A cathode comprises, in its discharged state, a layer of hollow γ-Fe2O3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow γ-Fe2O3 nanoparticles comprise a crystalline shell of γ-Fe2O3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow γ-Fe2O3 nanoparticles.
Active material particles are provided that exhibit performance suitable for increasing the output of a lithium secondary battery and little deterioration due to charge-discharge cycling. The active material particles provided by the present invention have a hollow structure having secondary particles including an aggregate of a plurality of primary particles of a lithium transition metal oxide, and a hollow portion formed inside the secondary particles, and through holes that penetrates to the hollow portion from the outside are formed in the secondary particles. BET specific surface area of the active material particles is 0.5 to 1.9 m2/g.
A particle, including: a plurality of crystallites including a first composition having a layered α-NaFeO2-type structure and including lithium in an amount of about 0.1 to about 1.3 moles, per mole of the first composition, nickel in an amount of about 0.1 to about 0.79 mole, per mole of the first composition, cobalt in an amount of 0 to about 0.5 mole, per mole of the first composition, and oxygen in an amount of about 1.7 to about 2.3 moles, per mole of the first composition; and a grain boundary between adjacent crystallites of the plurality of crystallites and including a second composition having the layered α-NaFeO2-type structure, a cubic structure, or a combination thereof, wherein a concentration of cobalt in the grain boundary is greater than a concentration of cobalt in the crystallites.
A method of intermittently coating a moving surface with paste containing electrochemically active particles by a nozzle having a slot-shaped delivery opening includes supplying paste to the delivery opening from a paste reservoir via a transport channel and regulating paste supply to the delivery opening with a rotatably mounted control axle which enables the paste supply to the delivery opening in a first switching position and, in a second switching position, blocks the transport channel and disconnects a section of the transport channel extending as far as the delivery opening from the paste supply, wherein the rotatably mounted control axle comprises a passage via which the paste reservoir is in communicating connection with the delivery opening in the first switching position and the disconnected section of the transport channel is in communicating connection with the reduced pressure source in the second switching position.
A secondary battery typified by a lithium-ion secondary battery includes a battery outer container in which a gas release valve and positive and negative electrode external terminals are provided, an electrode group in which positive and negative plates are stacked with a separator interposed therebetween and current collection portions are provided at both ends, and positive and negative electrode current collectors forming a current path from the current collection portions of the electrode group to the positive and negative electrode external terminals, and the cross-sectional area of a gas exhaust flow channel through which gas generated inside the electrode group is discharged from the gas release valve is set so as to increase in a downstream direction.
A light-emitting component may include: an electrically active region, including: a first electrode; a second electrode; and an organic functional layer structure between the first electrode and the second electrode; and a thermotropic layer, which is arranged outside the electrically active region.
An organic light emitting diode (“OLED”) display includes a display panel; and a window on the display panel. The OLED display further includes an optical unit on the display panel, and including a metal material film and a dielectric material film.
Provided are a substrate for an organic electronic device (OED), an organic electronic system, and a light. The substrate capable of forming an OED ensuring excellent performances and reliability because it may have excellent performances including light extraction efficiency, permeation of moisture or a gas from an external environment may be inhibited, and growth of dark spots may be controlled may be provided.
The invention provides a light-extraction element, comprising a light-diffusion layer which including a resin; and a plurality of raspberry-like particles uniformly dispersed in the resin, wherein the raspberry-like particles feature a surface with a plurality of round bumps, and the plurality of raspberry-like particles are composed of a material having a single reflective index. The invention also provides a light-emitting device, including a pair of electrodes composed of an anode and a cathode; an organic light-emitting unit disposed between the pair of electrodes, wherein the organic light-emitting unit includes a light-emitting layer; and a light-extraction element which is disposed on a light-emitting surface of the light-emitting device.
An organic light emitting display apparatus is disclosed. The display apparatus includes a substrate, an organic light emitting unit on the substrate, and a film encapsulation layer on the organic light emitting unit. The film encapsulation layer includes a hydrophobic organic layer disposed at an outermost portion of the film encapsulation layer.
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting layer is provided between a pair of electrodes. The light-emitting layer is a stack of a first light-emitting layer, which contains at least a first phosphorescent compound, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property and is provided on the anode side, and a second light-emitting layer, which contains at least a second phosphorescent compound and the first organic compound having an electron-transport property. A combination of the first organic compound and the second organic compound forms an exciplex.
The present invention provides an organic thin-film light emitting device having both high luminance efficiency and durability due to the use of a light emitting device material containing a compound having a specific carbazole skeleton.
The present invention provides a nonvolatile memory element, in a nonvolatile memory element having a variable resistance layer possessing a stacked structure, in which the variable resistance layer has a high resistance change ratio, and a method of manufacturing the same. The nonvolatile memory element according to one embodiment of the present invention includes a first electrode, a second electrode, and a variable resistance layer which is interposed between the first electrode and second electrode and in which the resistance value changes into at least two different resistance states. The variable resistance layer possesses a stacked structure having a first metal oxide layer containing Hf and O, and a second metal oxide layer that is provided between the first metal oxide layer and at least one of the first electrode and the second electrode and contains Al and O.
A MTJ for a domain wall motion device includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/Ni)n composition or the like where n is from 2 to 30. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. There may be a Ta insertion layer between the CoFeB layer and laminated layer to promote (100) crystallization in the CoFeB layer. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
To provide a piezoelectric vibrating piece capable of preventing short circuit at the time of mounting caused by miniaturization. In a piezoelectric vibrating piece having a support arm portion provided with mount electrodes between a pair of vibrating arm portions, a layout wiring connected to the first mount electrode on the base end side of the support arm portion is formed on a mount surface, and at least a layout wiring passing the vicinity of the first mount electrode in the layout wirings connected to the second mount electrode on the tip side of the support arm portion is formed on an opposite mount surface side, thereby preventing short circuit of a conductive adhesive for bonding the first mount electrode to an electrode on the package side with respect to the layout wiring on the second mount electrode side.
Apparatus for electric power generation. A system includes a boiler for heating a fluid, the boiler directing a first portion of the heated fluid to a turbine for the generation of electric power and a second portion of the heated fluid to a thermoelectric (TE) generator, and a condenser connected to the turbine that condenses hot fluid emitted from the turbine and feeds the condensed fluid to the TE generator, the TE generator generating electric power from a difference in temperature of the second portion of the heated fluid and the condensed fluid from the turbine.
Various examples of a carrier structure and lighting device are described. A carrier structure configured to carry an LED includes a housing and a lead frame. The housing defines a concavity. The lead frame includes a main board portion having a main board through hole, at least two insertion portions extending from the main board portion into the main board through hole, and two electrode portions configured to be electrically coupled to the LED. The housing is disposed over the at least two insertion portions with the at least two insertion portions inserted into the housing. The concavity of the housing expose the electrode portions. Each of the electrode portions has a respective protrusion sub-portion that extends outside of the housing. Additionally, a lighting device utilizing the carrier structure is also provided.
Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer and a light extraction pattern in which a period (a) exceeds λ/n (where, λ is a wavelength of light emitted from the active layer, and n is a refractive index of the light emitting structure) on the light emitting structure. The period (a) may be in the range of 5×(λ/n)
A light emitting diode includes a semiconductor stacked structure, a substrate, a first electrode, a second electrode and a third electrode. The semiconductor stacked structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer. The first semiconductor layer has a first surface and a second surface opposite to each other and has a first region and a second region. The second semiconductor layer is disposed on the second surface. The light emitting layer is disposed between the first semiconductor layer and the second semiconductor layer. The substrate has a first conductive layer and a second conductive layer thereon. The first electrode is disposed between the second semiconductor layer and the first conductive layer. The second electrode is disposed on the first surface. The third electrode is disposed between the second region and the second conductive layer, and electrically connected to the second electrode.
A method is provided which is suitable for manufacturing a solar module. When a defective solar cell (20a) is discovered in a solar cell string (25), a disconnecting step is performed to disconnect the wiring members (30a, 30b) bonded to the defective solar cell (20a) and to the solar cells (20b, 20c) adjacent to the defective solar cell (20a), and to remove the defective solar cell (20a) from the solar cell string (25). A reconnecting step is then performed to electrically connect the solar cells (20b, 20c) that were adjacent to the defective solar cell (20a) to a new solar cell (20d) by using new wiring members (34a, 34b), bonding each new wiring member (34a, 34b) using a resin adhesive to a region closer to the end than the region in which the disconnected end (30a1, 30b1) of the wiring member of the solar cell (20b, 20c) adjacent to the defective solar cell (20a) had been bonded in order to create a new solar cell string (25a).
Avalanche photodiodes (APDs) and single photon avalanche detectors (SPADs) are provided with a lateral multiplication region that provides improved amplification through increased impact ionization.
A transistor includes a substrate and a polymer layer that is in contact with the substrate. The polymer layer has a first pattern defining a first area. There is an inorganic semiconductor layer over and in contact with the polymer layer that has a second pattern defining a second area. The first area is located within the second area. There is a source electrode in contact with a first portion of the semiconductor layer and a drain electrode in contact with a second portion of the semiconductor layer, and the source electrode and the drain electrode separated by a gap. A gate insulating layer is in contact with the inorganic semiconductor layer in the gap. There is a gate in contact with the gate insulating layer over the gap.
An object is to provide a semiconductor device including an oxide semiconductor in which miniaturization is achieved while favorable characteristics are maintained. The semiconductor includes an oxide semiconductor layer, a source electrode and a drain electrode in contact with the oxide semiconductor layer, a gate electrode overlapping with the oxide semiconductor layer, a gate insulating layer provided between the oxide semiconductor layer and the gate electrode, and an insulating layer provided in contact with the oxide semiconductor layer. A side surface of the oxide semiconductor layer is in contact with the source electrode or the drain electrode. An upper surface of the oxide semiconductor layer overlaps with the source electrode or the drain electrode with the insulating layer interposed between the oxide semiconductor layer and the source electrode or the drain electrode.
A Fin-FET fabrication approach and structure are provided using channel epitaxial regrowth flow (CRF). The method includes forming a Fin-FET structure including a Si line on a substrate, shallow trench isolation (STI) oxide on both sides of the Si line on the substrate, and a poly wall on top of and across the STI oxide and the Si line, wherein the Si line is higher than the STI oxide from the substrate. The method further includes thinning the STI oxide and the Si line while maintaining about the same height ratio of the Si line and the STI oxide, and forming a spacer wall adjacent to both sides of the poly wall and further adjacent to Si and STI oxide side walls under the poly wall uncovered due thinning the STI oxide and the Si line.
A semiconductor device includes a substrate; a deep well region disposed in the substrate; an element region disposed in the substrate and in the deep well region; a drain region disposed in the substrate, in the deep well region, and surrounding the element region; a gate structure disposed on the surface of the substrate, adjacent to the deep well region, and surrounding the drain region; a well region disposed in the substrate, in the deep well region, and surrounding the gate structure; a source region disposed in the substrate, in the well region, and surrounding the gate structure; a body contact region disposed separately from the source region in the well region and surrounding the source region; and an annular doped region disposed separately from the deep well region in the substrate and surrounding the deep well region.
A high-voltage metal-oxide-semiconductor (HV MOS) transistor device and a manufacturing method thereof are provided. The HV MOS transistor device includes a semiconductor substrate, a gate structure, a first sub-gate structure, and a drain region. The gate structure is disposed on the semiconductor substrate. The semiconductor substrate has a first region and a second region respectively disposed on two opposite sides of the gate structure. The first sub-gate structure is disposed on the semiconductor substrate, the first sub-gate structure is separated from the gate structure, and the first sub-gate structure is disposed on the first region of the semiconductor substrate. The drain region is disposed in the first region of the semiconductor substrate. The drain region is electrically connected to the first sub-gate structure via a first contact structure disposed on the drain region and the first sub-gate structure.
Semiconductor power devices such as vertical FPMOS are described preferably having a plurality of trenches formed at a top portion of a semiconductor substrate extending laterally across the semiconductor substrate along a longitudinal direction. Each trench has sidewalls generally perpendicular to a longitudinal direction of the trench and extending downward from a top surface to a trench bottom. Gate electrodes and source electrodes are positioned in the trenches with controlled spacing between their surfaces to achieve increased capacitance between them at increasing depth from the top surface. This provides higher frequency performance at higher power levels while improving tolerance to higher voltage.
An embodiment concerns forming an EPI film on a substrate where the EPI film has a different lattice constant from the substrate. The EPI film and substrate may include different materials to collectively form a hetero-epitaxial device having, for example, a Si and/or SiGe substrate and a III-V or IV film. The EPI film may be one of multiple EPI layers or films and the films may include different materials from one another and may directly contact one another. Further, the multiple EPI layers may be doped differently from another in terms of doping concentration and/or doping polarity. One embodiment includes creating a horizontally oriented hetero-epitaxial structure. Another embodiment includes a vertically oriented hetero-epitaxial structure. The hetero-epitaxial structures may include, for example, a bipolar junction transistor, heterojunction bipolar transistor, thyristor, and tunneling field effect transistor among others. Other embodiments are described herein.
After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
Provided is a method of fabricating a transistor. The method includes forming a fin portion protruding upward from a substrate, forming a device isolation pattern on the substrate to cover a lower portion of a sidewall of the fin portion, forming a trench in the device isolation pattern, the trench exposing a top surface and sidewalls of a channel region of the fin portion, and injecting a Group-IV element into the channel region of the fin portion to increase the volume of the channel region.
Provided is a TFT with an improved gate insulator, having an insulator substrate, a gate layer, a gate insulator layer, a active semiconductor layer, and a source and drain electrode layer, wherein the gate insulator layer includes a first silicon nitride film, a second silicon nitride film disposed on the first silicon nitride film and a third silicon nitride film disposed on the second silicon nitride, and compared to the second silicon nitride film, each of the first silicon nitride film and the third silicon nitride film is much thinner and has a lower content of N—H bond. Also provided is a display including said TFTs. According to the present disclosure, an improved gate insulator layer capable of withstanding higher voltage can be achieved due to the laminated structure and accordingly a TFT with excellent reliability can be formed.
A semiconductor device includes a semiconductor region, a first well region which has a first conductive type, a second well region which has a second conductive type, a source region, a drain region, a channel region, and a gate insulation film. The first well region and the second well region are formed in the semiconductor region adjacent to each other. The source region is on the first well region; the drain region is on the second well region. The semiconductor region has a first region, a second region, and a third region. A dopant concentration of the second conductive type in the third region is higher than a dopant concentration of the second conductive type in the first region.
A Tunnel Field-Effect Transistor (TFET) includes a source region in a semiconductor substrate, and a drain region in the semiconductor substrate. The source region and the drain region are of opposite conductivity types. The TFET further includes a gate stack over the semiconductor substrate, with the source region and the drain region extending to opposite sides of the gate stack. The gate stack includes a gate dielectric over the semiconductor substrate, and a ferroelectric layer over the gate dielectric.
A triple well isolate diode including a substrate having a first conductivity type and a buried layer formed in the substrate, where the buried layer has a second conductivity type. The triple well isolated diode including an epi-layer formed over the substrate and the buried layer, where the epi-layer has the first conductivity type. The triple well isolated diode including a first well formed in the epi-layer, where the first well has the second conductivity type, a second well formed in the epi-layer, where the second well has the first conductivity type and surrounds the first well, a third well formed in the epi-layer, where the third well has the second conductivity type and surrounds the second well. The triple well isolated diode including a deep well formed in the epi-layer, where the deep well has the first conductivity type and extends beneath the first well.
A semiconductor device having high-k gate insulation films and a method of fabricating the semiconductor device are provided. The semiconductor device includes a first gate insulation film on a substrate and the first gate insulation film includes a material selected from the group consisting of HfO2, ZrO2, Ta2O5, TiO2, SrTiO3 and (Ba,Sr)TiO3, and lanthanum (La). Additionally, the semiconductor device includes a first barrier film on the first gate insulation film, a first gate electrode on the first barrier film, and n-type source/drain regions in the substrate at both sides of the first gate electrode.
In one embodiment, a semiconductor device is provided that includes a gate structure present on a channel portion of a fin structure. The gate structure includes a dielectric spacer contacting a sidewall of a gate dielectric and a gate conductor. Epitaxial source and drain regions are present on opposing sidewalls of the fin structure, wherein surfaces of the epitaxial source region and the epitaxial drain region that is in contact with the sidewalls of the fin structure are aligned with an outside surface of the dielectric spacer. In some embodiments, the dielectric spacer, the gate dielectric, and the gate conductor of the semiconductor device are formed using a single photoresist mask replacement gate sequence.
A semiconductor device comprises a semiconductor substrate; a channel layer of at least a first III-V semiconductor compound above the semiconductor substrate; a gate stack structure above a first portion of the channel layer; a source region and a drain region comprising at least a second III-V semiconductor compound above a second portion of the channel layer; and a first metal contact structure above the S/D regions comprising a first metallic contact layer contacting the S/D regions. The first metallic contact layer comprises at least one metal-III-V semiconductor compound.
Some embodiments relate to a memory device with an asymmetric floating gate geometry. A control gate is arranged over a floating gate. An erase gate is arranged laterally adjacent the floating gate, and is separated from the floating gate by a tunneling dielectric layer. A sidewall spacer is arranged along a vertical sidewall of the control gate, and over an upper surface of the floating gate. A portion of the floating gate upper surface forms a “ledge,” or a sharp corner, which extends horizontally past the sidewall spacer. A sidewall of the floating gate forms a concave surface, which tapers down from the ledge towards a neck region within the floating gate. The ledge provides a faster path for tunneling of the electrons through the tunneling dielectric layer compared to a floating gate with a planar sidewall surface. The ledge consequently improves the erase speed of the memory device.
A semiconductor device includes: a p-type semiconductor layer; an n-type semiconductor layer; a first electrode layer; a second electrode layer; and a control electrode layer. The first and second electrode layers are electrically connected such as to each operate at an identical potential. The first electrode layer is connected with a part of a surface of the second electrode layer which is opposite to a surface of the second electrode layer that is in contact with the p-type semiconductor layer. The second electrode layer is connected with a connection line which is a part of a peripheral line of a joint interface between the p-type semiconductor layer and the n-type semiconductor layer on an interface side between the second electrode layer and the p-type semiconductor layer, and is formed to be extended to a position on a control electrode layer side of the connection line.
According to one embodiment, a nitride semiconductor element includes a functional layer and a stacked body. The stacked body includes a GaN intermediate layer, a low Al composition layer, a high Al composition layer, and a first Si-containing layer. The low Al composition layer includes a nitride semiconductor having a first Al composition ratio. The low Al composition layer is provided between the GaN intermediate layer and the functional layer. The high Al composition layer includes a nitride semiconductor having a second Al composition ratio. The high Al composition layer is provided between the GaN intermediate layer and the low Al composition layer. The second Al composition ratio is higher than the first Al composition ratio. The first Si-containing layer is provided between the GaN intermediate layer and the high Al composition layer.
A method of fabricating raised fin structures is provided, the fabricating including: providing a substrate and at least one dielectric layer over the substrate; forming a trench in the at least one dielectric layer, the trench having a lower portion, a lateral portion, and an upper portion, the upper portion being at least partially laterally offset from the lower portion and being joined to the lower portion by the lateral portion; and, growing a material in the trench to form the raised fin structure, wherein the trench is formed to ensure that any growth defect in the lower portion of the trench terminates either in the lower portion or the lateral portion of the trench and does not extend into the upper portion of the trench.
Semiconductor devices including empty spaces and methods of forming the semiconductor devices are provided. The semiconductor devices may include first and second line structures extending in a direction on a substrate, an insulating isolation pattern between the first and second line structures and a conductive structure between the first and second line structures and next to the insulating isolation pattern along the direction. The semiconductor devices may also include an empty space including a first portion between the first line structure and the conductive structure and a second portion between the first line structure and the insulating isolation pattern. The first portion of the empty space may have a height different from a height of the second portion of the empty space.
A display device comprising including a plurality of pixels arranged in the shape of a matrix above a substrate, and a plurality of thin film transistors arranged corresponding to each of the plurality of pixel having an organic EL layer, the device comprising; a planarized film covering the thin film transistor and a wire connected with the thin film transistor; a reflecting layer formed above the planarized film; a light path length expanded layer covering the reflecting layer; and a pixel transparent electrode formed above the light path length expanded layer.
An organic light emitting diode display includes a substrate having a display unit and a peripheral portion, scan lines in a first direction, data lines in a second direction, pixels in the display unit and having pixel circuit portions and organic light emitting diodes, first dummy lines in the display unit and extending in the first direction, at least one second dummy line in the peripheral portion and extending in the second direction, dummy circuit portions connected to a first dummy line and the at least one second dummy line, driving pads connected to end portions of the data lines, at least one dummy driving pad connected to an end portion of the at least one second dummy line, and a driving circuit configured to transmit a data signal to the driving pads and to the at least one dummy driving pad.
There is provided a light emitter comprising light emitting devices (for example, light emitting diodes) which are electrically interconnected to provide an array of at least two serially connected subsets of parallel connected light emitting devices, each subset comprising at least three light emitting devices. In some embodiments, the light emitting devices are from a contiguous region of a wafer. There is also provided a light emitter, comprising light emitting devices, means for mechanically interconnecting the light emitting devices and means for electrically interconnecting the light emitting devices to provide serially connected subsets interconnected in parallel, each subset comprising at least three light emitting devices. Also, methods of fabricating light emitters.
An intermediate integrated circuit die of a stacked integrated circuit system includes an intermediate semiconductor substrate including first polarity dopants is thinned from a second side. A first well including first polarity dopants is disposed in the intermediate semiconductor proximate to a first side. A second well including second polarity dopants is disposed in the intermediate semiconductor substrate proximate to the first side. A deep well having second polarity dopants is disposed in the intermediate semiconductor substrate beneath the first and second wells. An additional implant of first polarity dopants is implanted into the intermediate semiconductor substrate between the deep well and the second side of the intermediate semiconductor substrate to narrow a depletion region overlapped by the additional implant of first polarity dopants. The depletion region is between the deep well and the second side of the intermediate semiconductor substrate.
According to embodiments of the present invention, there are provided a thin film transistor, an array substrate and method of manufacturing the same, and a display device. The thin film transistor comprises: a gate electrode, a gate insulating layer, a semiconductor active layer, an etch stop layer, a source electrode and a drain electrode, wherein, the gate insulating layer is interposed between the gate electrode and the semiconductor active layer, the etch stop layer covers the semiconductor active layer, and has a first via hole and a second via hole formed therein which expose a part of the semiconductor active layer, the source electrode of the thin film transistor contacts with the semiconductor active layer through the first via hole, and the drain electrode of the thin film transistor contacts with the semiconductor active layer through the second via hole.
A method of manufacturing a semiconductor device is provided. A substrate including a structure in which a hole is formed is prepared. Precursors including a nickel alkoxide compound are vaporized. A nickel-containing layer is formed in the hole by providing the vaporized precursors including the nickel alkoxide compound onto the substrate.
Some embodiments of the present disclosure relate to a split gate memory cell which includes a select gate and a memory gate. The select gate has a planar upper surface disposed over a semiconductor substrate and is separated from the substrate by a gate dielectric layer. The memory gate has a planar upper surface arranged at one side of the select gate and is separated from the substrate by a charge trapping layer. The charge trapping layer extends under the memory gate. A first spacer is disposed above the memory gate and is separated from the memory gate by a first dielectric liner. The first dielectric liner extends upwardly along an upper sidewall of the charge trapping layer; and source/drain regions are disposed in the semiconductor substrate at opposite sides of the select gate and the memory gate.
An integrated circuit including a link or string of semiconductor memory cells, wherein each memory cell includes a floating body region for storing data. The link or siring includes at least one contact configured to electrically connect the memory cells to at least one control line, and the number of contacts in the string or link is the same as or less than the number of memory cells in the string or link.
A semiconductor device includes a silicon-based substrate, a gate structure and a laminated sacrificial oxide layer. The gate structure is on the silicon-based substrate. The laminated sacrificial oxide layer has a first portion on the silicon-based substrate and a second portion conformal to the gate structure, in which a first thickness of the first portion is substantially the same as a second thickness of the second portion. The laminated sacrificial oxide layer includes a native oxide layer and a silicon oxy-nitride layer. The native oxide layer is on the silicon-based substrate and conformal to the gate structure. The silicon oxy-nitride layer is conformal to the native oxide layer.
A semiconductor device includes first electrode, first semiconductor layer of first conductivity type on the first electrode, second semiconductor layer of second conductivity type on the first semiconductor layer, third semiconductor layer of the first conductivity type on second semiconductor layer, fourth semiconductor layer of the second conductivity type selectively located on the third semiconductor layer, gate electrode through the third and fourth semiconductor layers and into the second semiconductor layer and insulated therefrom, second electrode on the fourth semiconductor layer, fifth semiconductor layer of the second conductivity type between the first electrode and the second semiconductor layer, sixth semiconductor layer of the first conductivity type on the second semiconductor layer contacting the second electrode, and seventh semiconductor layer of the first conductivity type in the second and sixth semiconductor layers, such that the bottom thereof is closer to the first electrode than the bottom of the gate insulating film.
In order to provide a semiconductor device having high ESD tolerance, a semiconductor device (IC) is formed so that: a ground voltage wiring (22a) is electrically connected at one end in a wiring direction thereof to a wiring (22b) extending from a ground voltage pad used for external connection; an input voltage wiring (23a) is electrically connected at one end in a wiring direction thereof to a wiring (23b) extending from an input voltage pad used for external connection; and the one end of the ground voltage wiring (22a) and the one end of the input voltage wiring (23a) are substantially opposed to each other across a center of an NMOS transistor (10).
A unidirectional transient voltage suppressor (TVS) device includes first and second NPN transistors that are connected in parallel to each other. Each NPN transistor includes a collector region, an emitter. The first and second NPN structures are formed on a common substrate. The first NPN transistor has a floating base and the second NPN transistor has a base shorted to an emitter.
A scalable solid-state power controller system is provided with channel protection features. A plurality of output channels may be combined to provide a combined channel output. The current provided at the combined channel output is sourced from the plurality of output channels and each channel is protected from faults such as overcurrent events.
The purpose of the present invention is to provide a double-sided light emitting type semiconductor light emitting device that can be easily fabricated even if a semiconductor light emitting element is flip-chip mounted, and to provide a fabrication process for the same. The semiconductor light emitting device has a plurality of lead frames, a plurality of semiconductor light emitting elements connected to the plurality of lead frames, and a covering member that covers the plurality of semiconductor light emitting elements. The semiconductor light emitting device is characterized in that the edge of one lead frame among the plurality of lead frames is disposed in close proximity to the edge of another lead frame so as to form a gap, and the plurality of semiconductor light emitting elements are flip-chip mounted on the front surface and rear surface of the one lead frame and the other lead frame so as to straddle the gap.
A printed wiring board includes a first insulation layer, an electronic component built into the first insulation layer, a second insulation layer having a via conductor and formed on a first surface of the first insulation layer, and a conductive film formed on the first insulation layer on the opposite side with respect to the first surface of the first insulation layer such that the conductive film is positioned to face a back surface of the electronic component. The first insulation layer has a coefficient of thermal expansion which is set higher than a coefficient of thermal expansion of the second insulation layer.
A method for forming a package structure may comprise applying a die and vias on a carrier having an adhesive layer and forming a molded substrate over the carrier and around the vias, and the ends of the vias and mounts on the die exposed. The vias may be in via chips with one or more dielectric layers separating the vias. The via chips 104 may be formed separately from the carrier. The dielectric layer of the via chips may separate the vias from, and comprise a material different than, the molded substrate. An RDL having RDL contact pads and conductive lines may be formed on the molded substrate. A second structure having at least one die may be mounted on the opposite side of the molded substrate, the die on the second structure in electrical communication with at least one RDL contact pad.
According to one embodiment, an electronic device includes a first substrate, a second substrate, an electronic component and a first shield. The first substrate includes a first surface, a second surface, and an aperture. The second substrate includes a third surface fixed to the second surface. The electronic component is mounted on the third surface, passes through the aperture and protrudes from the first surface. The first shield includes a first portion facing the component protruding from the first surface, and second portions which extend from the first portion, are fixed to the first surface and face corner portions of the third surface respectively.
Dies having alignment marks and methods of forming the same are provided. A method includes forming trenches on a first side of a first workpiece, a die of the first workpiece being interposed between neighboring trenches. A portion of the die is removed to form an alignment mark, the alignment mark extending through an entire thickness of the die. A second side of the first workpiece is thinned until the die is singulated, the second side being opposite the first side.
A method for producing a metal contact in a semiconductor device is disclosed. The method comprises depositing a catalyst layer in a via hole, forming a catalyst from the deposited catalyst layer, and growing a carbon nanotube structure above the catalyst in the via hole. The method further comprises forming salicide from the catalyst, applying a chemical mechanical polishing (CMP) process to the carbon nanotube structure to remove top layers of catalyst and nanotube material, and depositing metal material above the carbon nanotube structure. Growing a carbon nanotube structure comprises absorbing a precursor on a surface of the catalyst formed in the via hole, forming a metal-carbon alloy from the catalyst and the precursor, and growing a carbon nanotube structure vertically from the via bottom. The carbon nanotube structure comprises a plurality of carbon nanotubes wherein the diameters of the carbon nanotubes are limited by the catalyst size.
According to example embodiments, a semiconductor package includes a lower package, upper packages on the lower package and laterally spaced apart from each other, a lower heat exhaust part between the lower package and the upper packages, an intermediate heat exhaust part between the upper packages and connected to the lower heat exhaust part, and an upper heat exhaust part on the upper packages and connected to the intermediate heat exhaust part.
A power semiconductor package has an ultra thin chip with front side molding to reduce substrate resistance; a lead frame unit with grooves located on both side leads provides precise positioning for connecting numerous bridge-shaped metal clips to the front side of the side leads. The bridge-shaped metal clips are provided with bridge structure and half or fully etched through holes for relieving superfluous solder during manufacturing process.
A method includes forming a first oxide layer on a surface of an integrated heat spreader, and forming a second oxide layer on top surfaces of fins, wherein the fins are parts of a heat sink. The integrated heat spreader is bonded to the heat sink through the bonding of the first oxide layer to the second oxide layer.
Provided are a heat releasing material for an electronic device being manufactured by the junction of a metal impregnated carbon composite material on a copper or aluminum substrate with reduced warpage; and a method for manufacturing the heat releasing material. A metal substrate/metal impregnated carbon composite material structure, characterized in that it comprises a metal substrate comprising a metal sheet, plate or block and, being joined on the metal substrate via a brazing material, a metal impregnated carbon composite material having a thickness of 0.1 mm to 2 mm; and a method for manufacturing the metal substrate/metal impregnated carbon composite material structure, characterized in that it comprises a step wherein a brazing material is caused to be present between the metal substrate and the metal impregnated carbon composite material, and they are kept at a temperature of 500° C. or higher and under a pressure of 0.2 MPa or more and then cooled.
The disclosure relates to a semiconductor chip and a stacked type semiconductor package having the same. The semiconductor chip includes: a semiconductor chip body having a first surface formed with a plurality of bonding pads and a second surface which is opposite to the first surface, a plurality of first and second through electrodes that pass through the semiconductor chip body and one ends thereof are electrically connected to the bonding pads, an insulating layer formed over the second surface of the semiconductor chip body such that the other ends of the first and second through electrodes are not covered by the insulating layer, and a first heat spreading layer formed over the insulating layer.
A chip package includes adjacent integrated circuits on a circuit board, and separate heat sinks are thermally coupled to the integrated circuits. Because the integrated circuits are in close proximity, heat pipes in the separate heat sinks are interdigitated to prevent mechanical interference between the heat sinks. The amount of interdigitation depends on the separation between the integrated circuits and how the integrated circuits are arranged relative to an external fluid (such as flowing air). At the minimum, the heat pipes in fin regions of the heat sinks (which include fins for convective heat transfer to the external fluid) are interdigitated. However, the heat pipes may be interdigitated in pedestal regions of the heat sinks (which are thermally coupled to the integrated circuits) and/or in ramp regions of the heat sinks (in which vertical positions of the heat sinks change from the pedestal regions to the fin regions).
Semiconductor packages are provided. A semiconductor package may include a wiring board and a first semiconductor chip on the wiring board. Moreover, the semiconductor package may include a metal layer on the first semiconductor chip and a second semiconductor chip on the metal layer. The metal layer may be between the first and second semiconductor chips.
A polishing apparatus capable of achieving a good control operation for a distribution of remaining film thickness is disclosed. The polishing apparatus includes: a top ring configured to apply pressures separately to zones on a back surface of a substrate to press a front surface of the substrate against a polishing pad; a film-thickness sensor configured to obtain a film-thickness signal that varies in accordance with a film thickness of the substrate; and a polishing controller configured to manipulate the pressures. The polishing controller calculates indexes of a remaining film thickness in zones on the front surface of the substrate, manipulate the pressures based on the indexes for controlling a distribution of the remaining film thickness, and update at least one of control parameters using polishing data obtained during polishing of the substrate.
A method of forming a semiconductor device that includes forming a fin structure, and forming an undoped epitaxial semiconductor material on the fin structure. A first portion of undoped epitaxial semiconductor material is formed on the sidewall of at least one of a source region portion and a drain region portion of the fin structure. A second portion of the undoped epitaxial semiconductor material is formed on the recessed surface of a bulk semiconductor substrate that is present at the base of the fin structure. The method further includes forming a doped epitaxial semiconductor material on the undoped epitaxial semiconductor material. The undoped epitaxial semiconductor material and the doped epitaxial semiconductor material provide a source region and drain region.
A method of fabricating a semiconductor device including a substrate having a copper interconnect exposed on a surface of an insulation film, wherein a layer of an anti-corrosion agent composed of organic material is formed on the surface of the copper interconnect. The method includes removing the layer of the anti-corrosion agent by heating the substrate; and forming a thin layer including manganese oxide on the surface of the copper interconnect by supplying a gas containing an organic compound of manganese to the substrate.
Methods of forming a wiring structure are provided including forming an insulating interlayer on a substrate and forming a sacrificial layer on the insulating interlayer. The sacrificial layer is partially removed to define a plurality of openings. Wiring patterns are formed in the openings. The sacrificial layer is transformed into a modified sacrificial layer by a plasma treatment. The modified sacrificial layer is removed by a wet etching process. An insulation layer covering the wiring patterns is formed on the insulating interlayer. The insulation layer defines an air gap therein between neighboring wiring patterns.
Methods for fabricating dual damascene structures are provided herein. In some embodiments, a method for fabricating a dual damascene interconnect structure may include patterning a first mask layer atop a substrate disposed in a process chamber, wherein the substrate includes one or more low temperature dielectric layers to define a first etch pattern, and wherein the one or more low temperature dielectric layers are formed atop the substrate at a temperature below about 180 degrees Celsius; etching the first etch pattern into the one or more low temperature dielectric layers; patterning a second mask layer atop the substrate to define a second etch pattern, wherein the first etch pattern and the second etch pattern are aligned; and etching the second etch pattern into the one or more low temperature dielectric layers to form a dual damascene pattern in the substrate.
A semiconductor package is provided, including a substrate having a top surface, a bottom surface opposing the top surface, a via communicating the top surface with the bottom surface, and a stator set formed by circuits; an axial tube axially installed in the via of the substrate; a plurality of electronic components mounted on the top surface of the substrate and electrically connected to the substrate; an encapsulant formed on the top surface of the substrate for encapsulating the electronic components and the axial tube; and an impeller axially coupled to the axial tube via the bottom surface of the substrate. In the semiconductor package, the stator set is formed in the substrate by a patterning process. Therefore, the thickness of the semiconductor package is reduced significantly.
A substrate transfer robot includes a hand and a controller. The hand includes at least one detector configured to detect an arrangement state of a substrate in a substrate storage. The controller is configured to control the at least one detector to detect the arrangement state of the substrate in the substrate storage with the hand inclined in plan view toward a rotation center of the substrate transfer robot relative to a substrate storage center line. The substrate storage center line is in a direction perpendicular to a front surface of the substrate storage.
A tape attaching apparatus includes: a chamber having an airtight space formed therein; a rubber sheet that partitions the airtight space into first and second airtight spaces and has an upper sheet on which a wafer is placed; a tape frame that holds a tape above the rubber sheet; and first and second supply/exhaust tubes that switch pressurization and depressurization of the first and second airtight spaces. In pressurizing the second airtight space and expanding the rubber sheet to lift the wafer to be attached to the tape, after bringing the first and second airtight spaces into a vacuum state, the wafer is attached to the tape while an amount of pressurization of the second airtight space is controlled to change an expansion rate of the rubber sheet from a low speed to a high speed stepwisely.
A substrate processing apparatus generates an electric field in a processing space between a lower electrode to which a high frequency power is supplied and an upper electrode facing the lower electrode and performs plasma processing on a substrate mounted on the lower electrode by using a plasma generated by the electric field. Distribution of a plasma density in the processing space is controlled by a magnetic field generated by controlling a plurality of electromagnets provided at a top surface of the upper electrode which is provided to be opposite to the processing space.
A technique of forming an asymmetric pattern by using a phase shift mask, and further, techniques of manufacturing a diffraction grating and a semiconductor device, capable of improving accuracy of a product and capable of shortening manufacturing time. In a method of manufacturing a diffraction grating by using a phase shift mask (in which a light shield part and a light transmission part are periodically arranged), light emitted from an illumination light source is transmitted through the phase shift mask, and a photoresist on a surface of a Si wafer is exposed by providing interference between zero diffraction order light and positive first diffraction order light which are generated by the transmission through this phase shift mask onto the surface of the Si wafer, and a diffraction grating which has a blazed cross-sectional shape is formed on the Si wafer.
A method for incorporating radicals of a plasma into a substrate or a material on a semiconductor substrate using a remote plasma source. In one embodiment, a method for processing doped materials on a substrate surface is provided and includes forming a doped layer on a substrate and optionally cleaning the doped layer, such as by a wet clean process. The method also includes generating an ionized nitrogen plasma in a remote plasma source, wherein the ionized nitrogen plasma has an ion concentration within a range from about 0.001% to about 0.1%, de-ionizing the ionized nitrogen plasma while forming non-ionized nitrogen plasma. The method further includes flowing the non-ionized nitrogen plasma into a processing region within a processing chamber, forming a nitrided capping layer from an upper portion of the doped layer by exposing the doped layer within the processing region to the non-ionized nitrogen plasma during a stabilization process.
Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
Methods of performing a wet oxidation process on a silicon containing dielectric material filling within trenches or vias defined within a substrate are provided. In one embodiment, a method of forming a dielectric material on a substrate includes forming a dielectric material on a substrate by a flowable CVD process, curing the dielectric material disposed on the substrate, performing a wet oxidation process on the dielectric material disposed on the substrate, and forming an oxidized dielectric material on the substrate.
A substrate processing apparatus includes a substrate holding part, a substrate rotating mechanism, and a chamber. The substrate rotating mechanism incudes an annular rotor part disposed in an internal space of the chamber and a stator part disposed around the rotor part outside the chamber. The substrate holding part is attached to the rotor part in the internal space of the chamber. In the substrate rotating mechanism, a rotating force is generated about a central axis between the stator part and the rotor part. The rotor part is thereby rotated about the central axis, being in a floating state, together with a substrate and the substrate holding part. In the substrate processing apparatus, the substrate can be easily rotated in the internal space having excellent sealability. As a result, it is possible to easily perform single-substrate processing in a sealed internal space.
A laser sustained plasma light source includes a plasma bulb containing a working gas flow driven by an electric current sustained within the plasma bulb. Charged particles are introduced into the working gas of the plasma bulb. An arrangement of electrodes maintained at different voltage levels drive the charged particles through the working gas. The movement of the charged particles within the working gas causes the working gas to flow in the direction of movement of the charged particles by entrainment. The resulting working gas flow increases convection around the plasma and increases laser to plasma interaction. The working gas flow within the plasma bulb can be stabilized and controlled by control of the voltages present on the each of the electrodes. A more stable flow of working gas through the plasma contributes to a more stable plasma shape and position within the plasma bulb.
A high-energy ion implanter includes a high-energy multi-stage linear acceleration unit that accelerates an ion beam so as to generate a high-energy ion beam, a deflection unit that changes the direction of the high-energy ion beam toward a semiconductor wafer, and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The beam transportation unit includes a beam shaper, a high-energy beam scanner, a high-energy electric field type beam collimator, and a high-energy electric field type final energy filter.
A semiconductor substrate inspection system includes an e-beam inspection system configured to deliver electrons to a specimen semiconductor substrate. A sensor is configured to detect reflected electrons that reflect off the surface of the specimen semiconductor substrate. An analysis unit is configured to determine a number of electrons received by the semiconductor substrate, and to determine at least one target region including at least one defect of the semiconductor substrate. A reference image module is in electrical communication with the analysis unit. The reference image module is configured to generate a first digital image having a plurality of pixels, and to adjust a gray-scale level of the pixels included in the target region based on the number electrons included in each pixel to generate a second digital image that excludes the at least one defect.
An ion implantation apparatus includes an ion beam directing unit, a substrate support, and a controller. The controller is configured to effect a relative movement between an ion beam passing the ion beam directing unit and the substrate support. A beam track of the ion beam on a substrate mounted on the substrate support includes circles or a spiral.
Apparatus having a magnetic lens configured to diverge an electron beam are useful in three-dimensional imaging using an electron microscope. The magnetic lens includes a body member having a core and defining a gap, and a winding surrounding a portion of the core. The body member and winding are configured such that an electrical current through the winding produces a magnetic field proximate to the gap.
A power supply for a magnetron has a PFC DC voltage source and an HV (High Voltage) converter. The voltage source is mains driven and supplies DC voltage above mains voltage on line, smoothed by capacitor to the HV converter. The latter supplies switched alternating current to transformer. This supplies higher voltage alternating current to a rectifier, in turn supplying the magnetron with high, magnetron powering, anode voltage on line. The DC voltage source has an PFC inductor, which is switched by a transistor switch under control of an integrated circuit. It is the inductor which enables the voltage source to provide a variable DC voltage. An input rectifier is provided for rectifying mains voltage. The output voltage of the voltage source is monitored and fed back to the integrated circuit by a voltage divider.
This disclosure provides systems, methods, and apparatus for providing a crosspoint switch used in an optical fiber data network. The crosspoint switch can switch optical signals received from any of a plurality of input optical fibers to any one of a plurality of output optical fibers. The crosspoint switch converts the optical signals received from the input optical fibers into electrical signals, switches the electrical signals, and converts the switched electrical signals back into optical signals before transmitting them over the output optical fibers. A micro-electromechanical systems (MEMS) electrical switch array is utilized to switch the electrical signals. The MEMS electrical switch array includes MEMS switching elements that allow for high frequency and high bandwidth operation of the crosspoint switch. The crosspoint switch can utilize circuit switching methodology for switching decisions.
A laminate-type actuator including a laminate wherein an electrostrictive material layer is wound and laminated in a form of a tube together with first and second electrodes sandwiching the electrostrictive material layer therebetween is provided with high volume efficiency and high reliability. The tubular laminate includes a pair of flat portions facing each other and a pair of curved portions interconnecting the pair of flat portions circumferentially and specifying spaces inside the curved portions. In a cross-section perpendicular to an axis of the laminate, an outer width formed by the pair of flat portions is smaller than an outer width of each of the curved portions, and a distance between the pair of flat portions is smaller than an inner width of each of the curved portions.
Electromagnetic actuators capable of generating a symmetrical bidirectional force are disclosed. The electromagnetic actuators include a housing made of a ferromagnetic material and a shaft made of a magnetically inert material movable along an axis within the housing. In one type of actuator, captive permanent magnets are arranged on opposite interior end walls of the housing and an electromagnetic coil is mounted on a central portion of the shaft. The electromagnetic coil is capable of generating a force when energized that causes linear displacement of the shaft in either direction along its axis depending on the direction of current through the electromagnetic coil. In another type of actuator, captive electromagnetic coils are arranged on opposing inner end walls of the housing, and a permanent magnet is mounted on a central portion of the shaft. The electromagnetic coils are capable of generating a force when energized that causes linear displacement of the shaft in either direction along its axis depending on a direction of current through the electromagnetic coils.
A sealed switch assembly for use with a disconnect operator movable between an on state, a tripped state, and an off state. The disconnect operator housed within a sealed enclosure. The switch assembly includes a housing sealed to the enclosure to inhibit ingress of solids and liquids therebetween. A handle is coupled to the disconnect operator and is disposed at least partially within the housing. The handle is sealed to the housing to inhibit ingress of solids and liquids therebetween, and is moveable between an on position and an off position. A low-friction trip indicator mechanism operates independent of the handle to indicate when the disconnect operator is in the tripped state.
Provided is a composite electrode including a metal layer and a composite dielectric layer. The composite dielectric layer includes a metal oxide dielectric layer and a polymer dielectric layer. The composite dielectric layer overlays the metal layer. The polymer dielectric layer includes a nitrogen-containing polymer and overlays the metal oxide dielectric layer. An electrolytic capacitor is also provided. The electrolytic capacitor has a polymer dielectric layer made of a nitrogen-containing polymer, and such polymer dielectric layer is beneficial to increase the insulating property of the metal oxide dielectric layer and the coverage property of the conductive polymer. Thereby, the conventional leakage current can be significantly reduced and the yield can be improved.
A composite electronic component may include: a composite body having a capacitor and an inductor coupled to each other therein; an input terminal disposed on a first end surface of the composite body; output terminals including a first output terminal disposed on a second end surface of the composite body and a second output terminal disposed on a lower surface of the capacitor of the composite body; and a ground terminal disposed on the lower surface of the capacitor of the composite body. The capacitor may be coupled to a side surface of the inductor.
A multilayer ceramic electronic component may include a ceramic body including dielectric layers and internal electrodes, electrode layers connected to the internal electrodes, and a conductive resin layer formed on the electrode layers and including a first conductor, a second conductor containing carbon nanotubes, and a base resin. When the multilayer ceramic electronic component is heat-tested by raising a temperature of the multilayer ceramic electronic component from room temperature to about 900° C. at a rate of about 10° C./min, a weight of the multilayer ceramic electronic component decreases by about 0.33% to about 2.19%.
In a monolithic ceramic capacitor, ceramic layers defining inner layers are mainly composed of a perovskite compound containing Ba and Ti. A portion of an electrically effective section in the ceramic layers near a connecting portion between the inner electrodes and an outer electrode undergoes mapping analysis by an energy-dispersive method. In regions of the resulting mapping image, the regions extending from the interfaces between the inner electrodes and a corresponding one of the ceramic layers to positions about ⅓ of the thickness of the ceramic layer in the stacking direction, ((L2−L3)/L1)×100≧50 is satisfied, where L1 represents the total length of grain boundaries, L2 represents the total length of grain boundaries where a rare-earth element is present, and L3 represents the total length of portions where the grain boundaries where the rare-earth element is present are overlapped with grain boundaries with a specific element present.
There is provided a multilayer ceramic capacitor including a ceramic body having first and second main surfaces, third and fourth end surfaces, and fifth and sixth side surfaces; a plurality of first and second internal electrodes having a dielectric layer to be alternately exposed to the third and fourth end surfaces; and first and second external electrodes formed on the end surfaces and the main surfaces and electrically connected to the first and second internal electrodes, wherein when a width of the first or second external electrode is A and a length of a margin part of the ceramic body in the length direction is B, a ratio (A/B) of the width of the first or second external electrode to the length of the margin part of the ceramic body in the length direction is 3.3 or less (A/B≦3.3).
A system and method may include energizing one or more of a plurality of electromagnets contained within and fixedly distributed about a first region of a structure and de-energizing other of the electromagnets to attract a substance contained and movable within a second region of the structure to the energized electromagnets and change the center of gravity of the structure. The structure may be disposed on a surface or within a liquid, where energizing and de-energizing of the electromagnets causes the structure to move about the surface or within the liquid in a desired fashion. The substance may be a magnetic or magnetizable substance. Energizing and de-energizing the electromagnets may be performed by a controller responsive to a signal received from a sensor or transceiver.
A magnetic fluid composition include a suspension of nano-particles including cross-crystallized multi-metal compounds dispersed in a solvent, the cross-crystallized multi-metal compounds including at least two or more metals having different valencies or oxidation states, the metals selected from the group consisting of a monovalent metal (Me+), a divalent metal (Me2+), a trivalent metal (Me3+), a quadrivalent metal (Me4+) and a rare earth metal. The magnetic fluid having a viscosity and surface tension that permits dispensing from an inkjet printer at a rate of at least 2.5 m/s, at a resolution of at least 600 dpi, supporting jetting pulse frequencies of at least 15 KHz per nozzle (enabling high speed inkjet printing applications of at least 0.6 m/sec per individual nozzle row per print head), and enabling uninterrupted, industrial level print output of magnetic ink character recognition (MICR) code lines suitable for high speed magnetic data scanning per established industry regulations (ANSI X9).
A conductive composite wire includes at least one external jacket made of copper, a first tube including a first metallic material (M1) contacting and located inside the copper jacket; a second tube including a second metallic material (M2) contacting and located inside the first tube; and a fiber including a third metallic material (M3) contacting and located inside the second tube. The copper and the first metallic material are immiscible with each other, the first and second metallic materials are immiscible with each other, and the second and third metallic materials are immiscible with each other. A copper-based coaxial microstructure includes a copper sheath containing an array of nanotubes and nanofibers according to a process for manufacturing the microstructure.
The paste composition for an electrode are constituted with copper-containing particles having a peak temperature of an exothermic peak showing a maximum area in the simultaneous ThermoGravimetry/Differential Thermal Analysis of 280° C. or higher, glass particles, a solvent, and a resin. Further, the photovoltaic cell has an electrode formed by using the paste composition for a photovoltaic cell electrode.
A gripper mechanism for moving an object having a surface cavity, the gripper mechanism comprising an actuation end moveable in an axial direction and a rotary body. A first mechanism is configured such that movement of the actuation end in an axial direction rotates the rotary body. A gripper is moveable between an engaged position and a disengaged position. In the engaged position the gripper is capable of engaging an object and in the disengaged position the gripper is capable of being received into and removed from a cavity of an object. The gripper is connected to the rotary body by a second mechanism. The second mechanism is configured such that rotary motion of the body moves the gripper between the engaged position and the disengaged position.
A semiconductor system includes a semiconductor device comprising: a plurality of first input pins suitable for receiving a plurality of command/address signals; a plurality of multi-purpose registers; and a parity check unit suitable for determining a parity check result as a pass when the number of first logic values in the command/address signals corresponds to a logic value of a parity bit, determining the parity check result as a fail when the number of the first logic values does not correspond to the logic value of the parity bit, and controlling the command/address signals to be stored in the multi-purpose registers; and a function test device suitable for applying the command/address signals to the first input pins during a function test, and controlling the command/address signals such that the number of the first logic values does not correspond to the logic value of the parity bit.
A method includes defining a normal voltage configuration for application to word lines (WLs) and Bit lines (BLs) of a memory block, and a an abnormal voltage configuration, different from the normal voltage configuration, for application to the WLs and the BLs of the memory block when a word-line-to-word-line (WL-WL) short-circuit is found between at least two of the WLs in the memory block. If no WL-WL short-circuit is found in the memory block, a data storage operation is performed in the memory block by applying the normal voltage configuration. If a WL-WL short-circuit is found in the memory block, the data storage operation is performed in the memory block by applying the abnormal voltage configuration.
A memory system includes a memory device, a plurality of memory blocks which include a plurality of memory cells electrically coupled to a plurality of word lines and store data requested from a host; and a controller suitable for programming first data in a first memory cell among the plurality of memory cells based on a write command received from the host, determining a read voltage of the first memory cell, and reading the first data programmed in the first memory cell based on the read voltage in response to a read command received from the host.
A memory cell array is configured to have a plurality of memory cells arranged in a matrix, each of the memory cells being connected to a word line and a bit line and being capable of storing n values (n is a natural number equal to or larger than 3). A control circuit controls the potentials of the word line and bit line according to input data and writes data into a memory cell. The control circuit writes data into the memory cell to a k-valued threshold voltage (k<=n) in a write operation, precharges the bit line once, and then changes the potential of the word line an i number of times to verify whether the memory cell has reached an i-valued (i<=k) threshold voltage.
A semiconductor device may include a candidate selector configured for generating a plurality of candidate threshold value sets from a plurality of digital values corresponding to a plurality of analog signals output from a memory cell array. The semiconductor device may include a threshold value selector configured for selecting one candidate threshold value set of the plurality of candidate threshold value sets as a threshold value set. The semiconductor device may include a comparator configured for deciding logic levels of the plurality of digital values according to the selected threshold value set.
Apparatuses, memories, and methods for decoding memory addresses for selecting access lines in a memory are disclosed. An example apparatus includes an address decoder circuit coupled to first and second select lines, a polarity line, and an access line. The first select line is configured to provide a first voltage, the second select line is configured to provide a second voltage, and the polarity line is configured to provide a polarity signal. The address decoder circuit is configured to receive address information and further configured to couple the access line to the first select line responsive to the address information having a combination of logic levels and the polarity signal having a first logic level and further configured to couple the access line to the second select line responsive to the address information having the combination of logic levels and the polarity signal having a second logic level.
An apparatus is disclosed that includes a memory controller chip and memory chips packaged with the memory controller chip. Each memory chip includes normal-retention storage rows that exhibit retention times greater or equal to a first time interval, and having been tested to generate information identifying low-retention storage rows that exhibit retention times less than the first time interval. Refresh logic refreshes the normal-retention storage rows at a first refresh rate corresponding to the first time interval, and refreshes each low-retention storage row at a second refresh rate that is greater than the first refresh rate.
A semiconductor memory system includes a memory controller and memory apparatus. The memory controller provides a first data having a first level and a second data having a second level. The memory apparatus adjusts a level of a reference voltage by comparing the reference voltage with each of the first data and the second data.
A method includes, when using a binary cache in an multi-level cell (MLC) flash memory splitting a codeword corresponding to a data page into multiple data pages and storing the multiple data pages into multiple single level cell (SLC) pages of the binary cache for subsequent storage into a single wordline of the MLC flash memory.
Example subject matter disclosed herein relates to apparatuses and/or devices, and/or various methods for use therein, in which an application of an electric potential to a circuit may be initiated and subsequently changed in response to a determination that a snapback event has occurred in a circuit. For example, a circuit may comprise a memory cell that may experience a snapback event as a result of an applied electric potential. In certain example implementations, a sense circuit may be provided which is responsive to a snapback event occurring in a memory cell to generate a feed back signal to initiate a change in an electric potential applied to the memory cell.
A transducing head may be connected to a controller and positioned proximal a data storage medium. The controller can be connected to a wear level identification circuit and configured to identify a first data region of the data storage medium having a first wear level and a second data region of the data storage medium having a second wear level. The first and second wear levels can respectively correspond to different amounts of component degradation of the data storage device.
An imaging system includes an imaging device and a portable terminal device. The portable terminal device includes a marker time information generation unit, a time difference detection unit, and a correction unit. The marker time information generation unit generates marker time information containing a marker input to a video file generated by the imaging device and input time of the marker in association with each other. The time difference detection unit detects a time difference between time measured by the clock of the imaging device and time measured by the clock of the portable terminal device. Then, the correction unit corrects the input time of the marker contained in the marker time information based on the time difference detected by the time difference detection unit and thereby generates corrected marker time information.
A technique implemented by a processor may include controlling a write head to write data to at least one partition of a data track of a magnetic data storage medium. The data track may include a plurality of partitions. The technique also may include determining, for each partition of the at least one partition, whether the partition has been previously written to by inspecting a partition overlap register associated with the data track. The partition overlap register stores a respective entry for each partition indicating whether the partition has been previously written to. The technique also may include, in response to determining that at least one respective partition of the at least one partition has been previously written to, incrementing a damage counter of at least one adjacent track and resetting each entry of the partition overlap register to indicate that each respective partition has not been previously written to.
A data reader may have a magnetoresistive stack positioned on an air bearing surface and consisting of at least a magnetically free structure that continuously extends from the air bearing surface with a first stripe height. A side shield can be separated from the magnetoresistive stack on the ABS and configured with a first magnetic layer having the first stripe height and a second magnetic layer having a third stripe height from the air bearing surface with the third stripe height being greater than the first stripe height. The side shield can be anti-ferromagnetically biased by a synthetic antiferromagnetic top shield structure that contacts the side shield through a transition metal material layer. The first stripe height can be configured to match a magnetically free layer of the magnetoresistive stack and the second stripe height can be configured to match a magnetically fixed layer of the magnetoresistive stack.
Methods and systems are provided for filtering sound. A position sensor determines positions of a plurality of occupants in a defined space. Multiple microphones receive sound and generate corresponding audio signals. A processor in communication with the microphones and the position sensor receives the positions of the occupants and the audio signals. The processor determines which of the occupants are engaging in speech and applies a temporal-spatial filter to the audio signals to generate a plurality of output signals corresponding respectively to each occupant of the defined space.
Systems, methods, and device are provided to perform refresh-rate dependent dithering. One embodiment of the present disclosure describes a computing device that includes an image source that generates spatially dithered image data and an electronic display communicatively coupled to the image source. More specifically, the electronic display receives the spatially dithered image data from the image source and determines a refresh rate with which to display an image by comparing a local histogram and an artifact histogram, in which the local histogram describes pixel grayscale distribution of a portion of the image and the artifact histogram describes a pixel grayscale distribution that when displayed will cause a perceivable artifact. Additionally, when the determined refresh rate is less than a threshold refresh rate of the electronic device, the electronic display spatially dithers the image data without temporally dithering the image data and displays the image based at least in part on the spatially dithered image data.
A method for producing a set of compositing instructions to render a region of a page receives a plurality of objects partitioned into at least two z-order bands, the received objects being associated with at least one transparency group that spans at least two bands. A transparency characteristic for at least one object within a z-order band is established. The method identifies a transparency group in the one band which is active in at least one other band and contains at least one object active in the region, determines contributing objects for the region in the band using the identified transparency group, the determination being performed by at least interpreting a change of the transparency characteristic of at least one object in the band, and produces a set of compositing instructions to render the region using the determined contributing objects.
According to an aspect, a display device includes: an image display panel; a signal processing unit; and a signal processing circuit. The signal processing unit calculates an extension coefficient α for an input signal, calculates an output signal of a first sub-pixel, calculates an output signal of a second sub-pixel, calculates an output signal of a third sub-pixel, calculates an output signal of a fourth sub-pixel, and calculates a control signal. The signal processing circuit performs filtering processing on the control signal by a set first time constant to calculate and output a light-source device control signal, when the control signal is smaller than a set threshold value, and performs filtering processing on the control signal by a set second time constant to calculate and output the light-source device control signal, when the control signal is equal to or larger than the threshold value.
A display device capable of driving at low speed includes a display panel, on which display lines each including a plurality of pixels are formed, a driver unit for driving the pixels, and a timing controller which controls an operation of the driver unit and includes a first control logic unit and a second control logic unit. When a mode conversion control signal of an on-level is input during a normal drive, in which a length of one frame is set to P, the first control logic unit expands a length of one frame for a low speed drive to (n×P), where n is a positive integer equal to or greater than 2, assigns a length P to each of n sub-frames included in the one frame for the low speed drive, and controls the operation of the driver unit in an interlaced low speed driving scheme.
A circuit arrangement for controlling a segmented LED backlight in particular, comprises a generator (50) with a first input (10) to be supplied with a synchronizing signal (SYNC) that comprises image frequency information and/or line frequency information of a display unit, a second input (20) to be supplied with a data signal (DATA) that comprises image information of the display unit, and with an output (30) for providing a modulated signal (MOD).
A display device includes a plurality of display pixels, a plurality of data lines that are connected to the display pixels, and a plurality of sensing lines that are connected to the display pixels. Each display pixel includes a driving transistor comprising a first terminal, a second terminal, and a third terminal, a capacitor connected to the first terminal of the driving transistor, a first switching transistor connected to the data line and the first terminal of the driving transistor, a light-emitting element connected to the third terminal of the driving transistor configured to emit light, a second switching transistor connected between the sensing line and the light-emitting element, and a third switching transistor connected between the third terminal of the driving transistor and the light-emitting element.
A pixel circuit with an organic light emitting diode (OLED) includes an OLED, a driving switch, an enabling switch, a compensation circuit, and a data switch. Through the compensation circuit, the data switch, and the control of a compensation voltage, a voltage at the control terminal of the driving switch of the pixel circuit is set according to a data voltage and the absolute value of a threshold voltage of the driving switch. Hence, the driving current determined by the driving switch relates to the data voltage.
Disclosed is an organic light emitting display device including a pixel connected to a data line, a gate line group, and a reference line. The pixel includes an organic light emitting diode (OLED), a driving transistor configured to control a current flowing in the OLED, a first switching transistor configured to selectively supply a data voltage to a first node, a second switching transistor configured to selectively supply an initial voltage to a second node, a third switching transistor configured to selectively connect a third node to the reference line, a fourth switching transistor configured to selectively connect the first node to the third node, a first capacitor connected between the first and second nodes to store a threshold voltage of the driving transistor, and a second capacitor connected between the first and third nodes to store the data voltage supplied through the first switching transistor.
The LED display system comprises an array of LEDs and a driver circuit that employs a scrambled PWM generator. The scrambled PWM generator is configured to generate a plurality of PWM pulses. The PWM pulses are distributed into a corresponding number of refresh segments. The driver circuit is configured so that one or more of PWM pulses are extendable by a certain offset value so that the pulse width in the corresponding refresh segments is wide enough for the LED to emit light.
A flexible display includes a flexible display panel, a curved formation unit for forming a curved surface of the flexible display panel, and a curved signal generating unit which supplies a curved signal to the curved formation unit so that a radius of curvature of the flexible display panel is controlled based on at least one of user setting conditions, external environmental conditions, and displaying image conditions. The curved formation unit forms the curved surface of the flexible display panel in response to the curved signal.
A method of conditioning a trainee to identify an object is provided. The method includes selecting a visceral response-evoking image for evoking a desired trainee response, wherein the desired trainee response is selected to correspond with the object, displaying a stimulus image depicting the object, wherein the instructions to display the stimulus image are to display the stimulus image within view of a trainee for a first duration that is below conscious awareness of the trainee, and displaying the visceral response-evoking image within view of the trainee after the display of the stimulus image and to display the visceral response-evoking image for a second duration that is below conscious awareness of the trainee in an attempt to link the desired trainee response to the object in a mind of the trainee in a manner characterized by an absence of conscious awareness of the link by the trainee.
A system and method for measuring a real traffic flow of an area use images of vehicles and pedestrians taken from the sky in time intervals of an area. The system and method also use continuous tracking data for vehicles and pedestrians, provided by navigator manufacturers, map providers, route applications or by phone carriers. Both images and continuous tracking data are combined and processed by a processor that applies image pattern recognition software to the images so that each vehicle and pedestrian in the images is recognized and labeled for which tracking data is available. The system identifies vehicles and pedestrians contained in both databases and applies a weight to thereto. Accordingly, the system and method are able to estimate the traffic flow and the total number of vehicles and pedestrians for a particular time and area.
Current and predicted traffic information is provided from incident data, traffic flow data, and media related to traffic received from multiple sources. The crowd sourced data may be provided passively by applications on remote mobile devices or actively by users operating the remote mobile devices. An application on a mobile device may receive the multiple data types, aggregate and validate the data, and provides traffic information for a user. The traffic information may relate to the current position and route of the user or a future route. The present technology may also provide driving efficiency information such as fuel consumption data, carbon footprint data, and a driving rating for a user associated with a vehicle.
An agent apparatus to relay operation control information between at least one remote controller and at least one electrical apparatus, the agent apparatus includes a communication unit to receive operation control information, of the at least one electrical apparatus, transmitted from the remote controller and to transmit the operation control information to the at least one electrical apparatus, a controller to learn the received operation control information of the at least one of electrical apparatus to generate a macro and to control output of the generated macro, and a storage unit to store the operation control information of the at least one electrical apparatus and the generated macro.
Variable autonomy level control systems are provided. A control system illustratively include an analog communications support component, a digital communications support component, a processing component, and a motor controller. The processing component synthesizes inputs received from the analog and the digital communications support components to generate an output. The motor controller utilizes the output from the processing component to generate a control signal for a motor. In certain embodiments, the input from the digital communications support component includes an indication of an autonomy level, and the processing component synthesizes the inputs by applying the autonomy level to the input received from the analog communications support component.
A system for facilitating automated response to a distress signal includes an attachment for a multifunction mobile computing device. In some embodiments, the attachment removably articulates to a sensor location coupled to a housing of the multifunction mobile computing device. In some embodiments, the system includes a computer program product in a non-transitory computer-readable medium. In some embodiments, the program instructions are computer-executable by the multifunction mobile computing device to implement detecting a disarticulation of the attachment from the sensor location on the multifunction mobile computing device, and, responsive to the detecting the disarticulation of the attachment from the sensor location on the multifunction mobile computing device, transmitting to a distress signal response receiver over a radio-frequency network from a radio-frequency transmitter located within a housing of the multifunction mobile computing device the distress signal.
Embodiments of the present invention provide a method, computer program product, and computer system for dynamically controlling an alert function on an electronic device. The method includes determining whether a user is engaged in a conversation with at least one other person. Voice and facial recognition technology determine whether the other person is an important person. If it is determined that the other person is an important person the alert function on the device will be disabled.
Many devices are configured to present alerts notifying a user of device events, but the user may not notice the alert due to a noisy environment. A user may mitigate missed alerts by increasing the alert volume or choosing a vibration mode, but such techniques depend upon the knowledge, attention, and memory of the user to adjust the device before the alert. Instead, a device may compare the noise level of the environment with a noise level threshold. If the noise level is below the threshold, the device presents the alert; but if the noise level is above the threshold, the device defers the presentation of the alert until the noise level diminishes below the threshold, and then presents the alert. The device may also send an automated response to the message, notifying a sender that the user may return the message upon leaving the noisy environment.
A method and apparatus for producing a haptic sensation is disclosed. An acoustic transducer at a first cellular communication device is used to determine a gesture of a user object with respect to a first cellular communication device. The gesture is generally performed in a three-dimensional space of the first cellular communication device. A haptic signal is created that corresponds to the determined gesture and is sent from the first cellular communication device to a second cellular communication device. An actuator at the second cellular communication device is actuated according to the haptic signal to produce a haptic sensation at the second cellular communication device.
A smart safe include one or more note validators. Access to the note validators and internal workings of the smart safe is defined by an applicable level of security at the smart safe. The applicable level of security may be dependent on whether the smart safe is experiencing an error condition and/or the identification of a user trying to access the smart safe. By allowing some users limited access to the note validators, the users may be able to resolve some error conditions without compromising the integrity of notes stored within the smart safe and without relying on dedicated service personnel to resolve the error condition at the smart safe.
In accordance with some embodiments, methods, systems and articles of manufacture provide for populating a plurality of game symbol positions with primary game symbols affecting a first aspect of the game such that a single primary game symbol is placed in each game symbol position; overlaying, on a randomly selected game symbol position, a special symbol affecting a second aspect of the game, such that the special symbol hides from view the single primary game symbol in the randomly selected game symbol position; outputting a game interface to a player which shows the game symbol positions as populated with the placed primary game symbols and overlaid with the special symbol; and removing the special symbol from the game interface, thereby revealing the single game symbol hidden from view by the special game symbol.
In a video game apparatus, a game picture that shows conditions of plural token coins on a field and a pusher table, and a token coin array picture that shows in line plural token coins that are able to be fed to the field, are displayed in a viewing area. If a position of a touch operation detected by the detector lies on the token coin array picture, a processor in the video game apparatus determines a number of the token coins to be fed based on the position of the touch operation and feeds the number being determined of the token coins to the field.
In some embodiments of the inventive subject matter, a method includes: presenting a wagering game on a wagering game machine; detecting, during the wagering game, a trigger for a bonus game; presenting player-selectable bonus game options on a display device of the wagering game machine; detecting sign-on to an account on a player community server; after detecting the sign-on of the account, presenting a hint on the display device, wherein the hint indicates bonus game types associated with the player-selectable bonus game options; detecting selection of one of the player-selectable bonus game options, wherein the one of the player-selectable bonus game options is associated with a particular one of the bonus game types; and presenting a bonus game of the particular one of the bonus game types.
A system for driver identification comprises a processor and a memory. The processor is configured to receive a driving maneuver signature and to determine a driver identification based at least in part on the driving maneuver signature. The memory is coupled to the processor and is configured to provide the processor with instructions.
Detected events such as impacts, accidents, breakdowns, and types of driving behaviors based on feedback from tilt, gravity, accelerometers and/or shock sensors within a portable electrical power storage device such as a battery and/or within a vehicle (e.g., an electric scooter) are communicated to the user's mobile device, dashboard display and/or backend systems over wired and/or wireless communication channels. The communication of the events and types of events are logged and automatically aggregated from multiple vehicles for further analysis to determine various potential system-wide safety issues and to track event history on an individual per-user or individual per-scooter basis or individual per-battery basis. Such event data may also be transferred accordingly via the battery exchange process at the online exchange machine through a memory device attached to the battery that stores the event data.
An augmented reality device may consist of at least a controller, memory, and at least one screen. The augmented reality device can be configured to display an augmented reality digital content via the at least one screen with the augmented reality digital content positioned at a physical location and displayed only when a user is oriented towards the physical location.
Methods for generating and displaying personalized virtual billboards within an augmented reality environment are described. The personalized virtual billboards may facilitate the sharing of personalized information between persons within an environment who have varying degrees of acquaintance (e.g., ranging from close familial relationships to strangers). In some embodiments, a head-mounted display device (HMD) may detect a mobile device associated with a particular person within an environment, acquire a personalized information set corresponding with the particular person, generate a virtual billboard based on the personalized information set, and display the virtual billboard on the HMD. The personalized information set may include information associated with the particular person such as shopping lists and classified advertisements. The HMD may share personalized information associated with an end user of the HMD with the mobile device based on whether the particular person is a friend or unknown to the end user.
3-D rendering systems include a rasterization section that can fetch untransformed geometry, transform geometry and cache data for transformed geometry in a memory. As an example, the rasterization section can transform the geometry into screen space. The geometry can include one or more of static geometry and dynamic geometry. The rasterization section can query the cache for presence of data pertaining to a specific element or elements of geometry, and use that data from the cache, if present, and otherwise perform the transformation again, for actions such as hidden surface removal. The rasterization section can receive, from a geometry processing section, tiled geometry lists and perform the hidden surface removal for pixels within respective tiles to which those lists pertain.
A deferred shading GPU, geometry data structure and method. One embodiment of the geometry data structure is found in a graphics processing subsystem operable to render a scene having a pixel represented by samples. The graphics processing subsystem includes: (1) a memory configured to store a geometry data structure associated with the pixel containing surface fragment coverage masks associated with the samples, and (2) a GPU configured to employ the surface fragment coverage masks to carry out deferred shading on the pixel.
A graphics processing pipeline may include at least two or more pipes, such that a lower frequency operation may be executed on one pipe while a higher frequency operation in the same instruction stream is executed at the same time on another pipe. In some cases, the lower frequency operation result may be held for later use in connection with the higher frequency operation on a different pipe. Especially where unused slots can be used for the lower frequency operation, efficiency may be improved.
A computer-implemented method for displaying graphical representation of legends in a data visualization engine is provided. The computer-implemented method includes receiving input to configure a plurality of swatches of the legends of graphical charts, the input comprises at least one of a threshold number of swatches, an identification of graphical area for displaying the swatches, and a size or a data of the swatches for display in the graphical charts of the data visualization engine. The computer-implemented method further includes modifying the legend swatches, based on the received input. The computer-implemented method further includes generating a plurality of graphical charts of the data visualization engine for displaying the swatches, based on the modification, wherein the display is generated randomly, based on at least one user preference for displaying the swatches.
Z-effective (e.g., atomic number) values are generated for one or more sets of voxels in a CT density image using sparse (measured) multi-energy projection data. Voxels in the CT density image are assigned a starting z-effective value, causing a CT z-effective image to be generated from the CT density image. The accuracy of the assigned z-effective values is tested by forward projecting the CT z-effective image to generate synthetic multi-energy projection data and comparing the synthetic multi-energy projection data to the sparse multi-energy projection data. When the measure of similarity between the synthetic data and the sparse data is low, the z-effective value assigned to one or more voxels is modified until the measure of similarity is above a specified threshold (e.g., with an associated confidence score), at which point the z-effective values substantially reflect the z-effective values that would be obtained using a (more expensive) dual-energy CT imaging modality.
A system for creating an object image of an object under investigation, comprises a computing device being configured for creating the object image by using first tomography data of the object provided by a first tomography system and second tomography data of the object provided by a second tomography system, wherein the computing device is configured for calculating a first forward model describing the first tomography data using the second tomography data, performing a first inversion of the first forward model, calculating a parameter set using the first inversion, and performing a second inversion using the parameter set to obtain the object image to be created. Furthermore, a method of imaging an object under investigation is described, wherein the system for creating an object image is used.
An device, method and program may properly perform gamut conversion of content and be applied to a gamut conversion device. A restoration conversion state confirming unit performs confirmation such as gamut conversion state of image data read out from an optical disc and the existence or not of restoration metadata. An information exchange unit communicates with an output device via a communication unit and performs information exchange such as the existence or not of restoration processing functionality and gamut conversion functionality and the like. A determining unit determines whether or not restoration processing is performed with a playing device based on information obtained by the restoration conversion state confirming unit and the information exchange unit. Similarly, the determining unit determines whether or not to perform gamut conversion processing with the playing device based on information obtained by the restoration conversion state confirming unit and the information exchange unit.
Systems and methods that facilitate image motion analysis are described herein. According to a first image motion analysis technique a first image is warped according to a locally affine model. The first warped image and a second image are compared and a match between the first warped image and the second image is discovered. A value for a motion parameter is estimated based on the match. According to a second image motion analysis technique, an image sequence is converted into an input matrix. A column of the input matrix corresponds to a vectorized image related to the image sequence. The input matrix is approximated with a low rank matrix having a lower rank than the input matrix. One or more outliers of the input matrix are detected.
Disclosed is an ultrasound image processing method. The ultrasound image processing method includes generating an ultrasound image indicating a region of interest (ROI) by using echo signals which corresponds to ultrasound waves irradiated onto the ROI, sequentially setting respective indexes in a plurality of blood flows included in the ROI detected based on the ultrasound image, determining blood flow corresponding to a selected index, based on an external signal for selecting one of the set indexes, and displaying information corresponding to the determined blood flow.
Technologies are generally described for a broadband passive sensing and tracking system that may employ a number of passive receivers that each have the capability of sensing electromagnetic waves (e.g., Radio Frequency “RF” signals) from surrounding broadcast sources. Each passive receiver may be adapted to sense through one or more antennas. Multiple receivers at different positions may be utilized to form a broadband sensing network adapted to perform collaborative tracking of a scene of interest. According to some examples, a beam-forming algorithm may be applied over the broadband sensing network utilizing an antenna array formed by the passive receivers to localize and track objects.
Certain embodiments provide a computer apparatus operable to carry out a data processing method to position a set of anatomical landmarks in a three-dimensional image data set of a part or all of a patient, comprising: providing a trained supervised machine learning algorithm which has been trained to place each of the set of anatomical landmarks; applying the supervised machine learning algorithm to place the set of anatomical landmarks relative to the data set; providing a trained point distribution model, including a mean shape and a covariance matrix, wherein the mean shape represents locations of the set of landmarks in a variety of patients; and applying the point distribution model to the set of landmarks with the locations output from the supervised machine learning algorithm by: removing any landmarks whose locations have an uncertainty above a threshold with reference to the mean shape and covariance matrix; followed by: an optimization of the locations of the remaining landmarks by maximizing joint likelihood that a new shape, derived from linear combinations of eigenvectors of the covariance matrix, is plausible.
Methods and apparatus relating to predicting outcome in a sporting environment are described. The methods and apparatus are used to relate trajectory performance of an object to body motions and body orientation associated with a generating the trajectory of the object. When equipment is utilized to generate the trajectory of an object, than the effects of equipment motions and equipment orientation can be also related to trajectory performance. The method and apparatus can be used to predict body motions and body orientations that increase the likelihood of achieving a desired outcome including specifying optimum motions and orientations for a particular individual. The method and apparatus may be used in training, coaching and broadcasting environments.
An image inspection apparatus for inspecting an output image on a recording medium by scanning the output image as a scanned image includes an inspection reference image generator to generate an inspection reference image using data of an output-target image; an image inspection unit to determine whether the scanned image includes a defect by comparing a difference between the inspection reference image and the scanned image with a given threshold; and a threshold determiner to determine the given threshold. The threshold determiner computes a difference between the inspection reference image and the scanned image. The threshold determiner determines the given threshold based on the difference between the scanned image and the inspection reference image.
The present invention may include acquiring a plurality of reference measurement images from a plurality of reference overlay target sites of a wafer via a reference image sampling process, wherein the reference image sampling process includes acquiring one or more images at each of a plurality of reference overlay target sites of the at least one wafer, generating a reference image by combining the plurality of reference measurement images acquired from the plurality of reference overlay target sites of the wafer of the reference image sampling process; acquiring one or more measurement images from an overlay target site of the wafer via a measurement image sampling process and measuring a virtual overlay of the one or more measurement images by comparing the one or more measurement images acquired from the overlay target site of the wafer to the generated reference image.
An imaging system having a first laser emitting a light beam to illuminate the object is provided. The system includes first and second beam splitters. The first beam splitter combines a first light beam portion and a third light beam portion emitted from a second laser to form a first interference pattern. The second beam splitter combines a second light beam portion and a fourth light beam portion to form a second interference pattern. The system includes digital cameras generating raw image data based on the first and second interference patterns, and a computer processing the raw image data to obtain synthetic image plane data.
An image resizing method including obtaining an original image including a peripheral region and a core region, the core region including a target image; obtaining a resized image including the entire core region and part of the peripheral region, the image being resized according to a priority; and displaying the resized image.
Various embodiments are generally directed to an apparatus, method and other techniques to determine color information for multiple graphical layers of a graphical display at a location of a pixel, and to determine a pixel color information for the pixel at the location based on the color information for each of the multiple graphical layers.
System and methods are disclosed for determining, through vehicle-to-vehicle communication, whether vehicles are involved in autonomous droning. Vehicle driving data and other information may be used to calculate a autonomous droning reward amount. In addition, vehicle involved in a drafting relationship in addition to, or apart from, an autonomous droning relationship may be financially rewarded. Moreover, aspects of the disclosure related to determining ruminative rewards and/or aspects of vehicle insurance procurement/underwriting.
The present disclosure provides for determining whether object accesses that occur in a file system qualify as relevant events, and displaying information about relevant events in a social file storage interface. A social file storage interface can provide a news feed of recent relevant events, a subscription list that displays information about relevant events performed by colleagues, and an access map that displays a visual representation of relevant events and relevant objects in the file system. An object access qualifies as a relevant event if an attribute of the object access satisfies relevance criteria defined by a user. If a user is not authorized to access an object, a relevant event pertaining to that object will not be displayed to the user in the social file storage interface. An object can also be accessed and opened from within the social file storage interface.
Disclosed are various embodiments for a recommendation insertion application. Instances of abandonment for media content are aggregated. A recommendation insertion point is calculated as a function of the instances of abandonment. A recommendation for suggested content is inserted into the media content at the recommendation insertion point.
Systems, methods and apparatus for distribution of digital products to portable electronic devices are disclosed. Digital products, such as digital assets or digital gifts, can be a purchased from a centralized location and associated with particular ones of the portable electronic devices. In one embodiment, the digital product is a digital asset (e.g., digital media asset) that is pre-stored to a portable electronic device, and after the digital asset is purchased, the digital asset can be activated on the portable electronic device. In another embodiment, the digital product is a digital gift that can be associated with a portable electronic device or a user account for a user of the portable electronic device. Optionally, a personalized message can be provided and associated with a portable electronic device.
A user of a wireless device, such as a mobile phone, can make purchases or obtain information via a network, such as the Internet, using both voice and non-verbal methods. Users can submit voice queries and receive non-verbal replies, submit non-verbal queries and receive voice replies, or perform similar operations that many the voice and data capabilities of modern mobile communication devices. The user may provide notification criteria indicating under what conditions a notification should be sent to the user's wireless device. When purchasing opportunities matching the selected notification criteria become available, the user is notified. The user can respond to the notification, and immediately take advantage of the purchasing opportunity if he so desires. Mixed-mode interactions can also be used by sellers to more advantageously control the marketing of distressed, time sensitive, or other merchandise/services.
Systems and methods for searching cloud-based databases are provided herein. A service provider may have a need to make their database(s) searchable through search technology. However, the service provider may not have the resources to implement such search technology. The search technology may allow for search queries against these cloud-based databases. The technology described herein provides a solution addressing the service provider's need, by giving a search technology that furnishes search results in a fast, accurate manner. In further embodiments, systems and methods to monetize those search results are also described herein.
A system for correlating customer payment card purchases and contemporaneous weather conditions. The system comprises a first data storage device containing payment card transaction data and a second data storage device comprising historic weather data. A processor is provided and configured to identify correlations between payment card transactions and weather conditions contemporaneous to the transactions or otherwise associated therewith.
Online advertisement selection techniques are described. In an implementation, data is obtained which describes interaction of one or more clients with advertisements embedded in television content. An advertisement is selected to be displayed in conjunction with web content accessed by the one or more clients based on the interaction with the advertisements described in the data.
Systems, methods and computer program products include job bots that are configured to periodically visit network sites that have stored therein one or more job postings. During each visit, the one or more job postings are analyzed and a searchable job post database is updated to add new job postings, modify changed job postings and delete any removed job postings. A search engine is provided for job seekers to search the searchable job post database where a consolidate list of job postings from the network sites is stored.
Disclosed herein is a method and apparatus for providing a gift using a communication network and a system including the apparatus. The present invention includes a) providing information about products to a user terminal connected with a gift provision apparatus through the communication network; b) selecting at least one of the products by the user terminal and inputting information of a receipt terminal for receiving the product; c) the user terminal transmitting a message requesting gift provision or a message requesting gift reception for the product to the gift provision apparatus; and d) the gift provision apparatus providing a gift icon corresponding to the product to the receipt terminal when receiving the message requesting gift provision.
A method for using a smartcard is provided. The smartcard may include a microprocessor chip, a button, a dynamic transaction authorization number, a Bluetooth low energy (“BLE”) device, and a battery. The battery may power the BLE and the microprocessor chip. The smartcard may also include memory. The memory may store the dynamic transaction authorization number. The smartcard may also include a dynamic magnetic strip. The dynamic magnetic strip may include a digital representation of the dynamic transaction authorization number. The method may include pressing the button. The method may also include transmitting an instruction to a smartphone for a request for a dynamic transaction authorization number. The transmission of an instruction may be in response to the pressing of the button. The method may also include receiving a dynamic transaction authorization number from a smartphone.
Described are systems for providing contextually relevant data to participants of an electronic communication. A screen sharing session is established between a plurality of participants of the electronic communication. A set of contextual relevance data is determined between contents of the screen sharing session, at least one of the participants, and external data related to the at least one of the participants. The screen sharing session is changed to include the contextual relevance data.
A system and method for having a plurality of participants author and submit segment candidates to create a collaborative work over a computer network. The plurality of participants receive segment instructions for authoring the segment candidates. The candidates are submitted to the system and at least a subset of the submitted segment candidates are distributed to a voting audience over the computer network. In response the system receives votes for a favored segment candidate from the voting audience. Next, a winning segment candidate is selected from the submitted segment candidates for inclusion in the collaborative work based on the votes. This process is repeated by the system until the collaborative work is complete.
Embodiments of the present invention address deficiencies of the art in respect to response subscriptions and provide a method, system and computer program product for response tracking across social networks. In one embodiment of the invention, a social networking response tracking method can be provided. The method can be performed by client-side logic and can include associating subscribers with a user or a group of users based upon a posting by the user or a user in the group of users within a client computing device for the user, aggregating different postings from the user to correspondingly different forums disposed about a global computer communications network, and, notifying the subscribers of the aggregated postings.
Methods, systems, and apparatus for predicting the characteristics of a user are described. A model based on a conditional multivariate normal distribution and social relationship information between the selected user and each of one or more other users are obtained. One or more characteristics of the selected user are determined based on the model and the social relationship information. The user characteristics may be determined by adjusting the characteristics of a typical source user according to the model and the social relationship information of the selected user.
Systems and methods may provide for partitioning a plurality of training samples into a first sequential list of centroids, removing one or more repeating centroids in the first sequential list of centroids to obtain a first reduced list of centroids and generating a set of Hidden Markov Model (HMM) parameters based on the first reduced list of centroids. Additionally, a plurality of detection samples may be partitioned into a second sequential list of centroids, wherein one or more repeating centroids in the second sequential list of centroids may be removed to obtain a second reduced list of centroids. The second reduced list of centroids may be used to determine a match probability for the plurality of detection samples against the set of HMM parameters. In one example, the reduced lists of centroids lack temporal variability.
A system, method, and computer-readable instructions for a distributed machine learning system are provided. A plurality of distributed learning environments are in communication over a network, wherein each environment has a computing device having a memory and a processor coupled to the memory, the processor adapted implement a learning environment via one or more agents in a rules-based system, wherein the agents learn to perform tasks in their respective learning environment; and a persistent storage in which knowledge comprising a plurality of rules developed by the agents for performing the tasks are stored, wherein the knowledge is tagged and shared with other agents throughout the plurality of distributed learning environments.
An approach is provided in which an information handling system analyzes correction information corresponding to an answer generated by a question answer system. The correction information includes a correction to the answer and captured variable information utilized by the question answer system to generate the answer. The information handling system selects input variables based upon the correction analysis and generates a test case that includes the selected input variables and the variable information. In turn, the information handling system tests the question answer system using the generated test case.
A method is disclosed herein that includes an act of causing a processor to access a deep-structured, layered or hierarchical model, called a deep convex network, retained in a computer-readable medium, wherein the deep-structured model comprises a plurality of layers with weights assigned thereto. This layered model can produce the output serving as the scores to combine with transition probabilities between states in a hidden Markov model and language model scores to form a full speech recognizer. Batch-based, convex optimization is performed to learn a portion of the deep convex network's weights, rendering it appropriate for parallel computation to accomplish the training. The method can further include the act of jointly substantially optimizing the weights, the transition probabilities, and the language model scores of the deep-structured model using the optimization criterion based on a sequence rather than a set of unrelated frames.
A dual interface smart card having a metal layer includes an IC module, with contacts and RF capability, mounted on a plug, formed of non RF impeding material, between the top and bottom surfaces of the metal layer. The plug provides support for the IC module and a degree of electrical insulation and isolation from the metal layer. The resultant card can have contact and contactless operating capability and an entirely smooth external metal surface except for the contacts of the IC module.
Embodiments are directed to methods and apparatuses for determining and verifying a location of an electronic label. A host system exchange information with the electronic label via ultrasonic data communication. The host system also identifies a location of the electronic label using an ultrasonic location technique. The host system also verifies that the electronic label is correctly located by comparing a calculated location of the electronic label with a known location of merchandise associated with the electronic label.
A method of generating a readable matrix code image encoding a message based on an input image and a readable matrix coding specification, comprising: calculating function areas readable to comply with a function patterns specification; determining an extent of free cells and derived cells according to a code word specification; calculating decode input values for free cells such that the appearance of the free cells compared to respective areas of the input image complies with a visual perceptual similarity criterion and with the code word specification; and calculating decode input values for derived cells based on the free cells decode input values and in compliance with the code word specification.
Disclosed is a method of printing a transformed image corresponding to a source image. The method determines at least a first scale factor to upscale the source image to generate the transformed image, the first scale factor being at a first mathematical precision. The source image is enlarged along at least one edge of said source image edges and pixel data is copied along the source image edges into the enlarged area of the enlarged source image. The method maps each pixel of the transformed image back to a corresponding pixel into the enlarged source image including the copied pixel data along the edge of the source image. The method may determine a second scale factor, the second scale factor being at a second mathematical precision, wherein each pixel of the transformed image is mapped back to a corresponding pixel in the enlarged source image using the second scale factor.
A recognition device includes a storage unit, an acquiring unit, a first calculator, a second calculator, a determining unit, and an output unit. The storage unit stores multiple training patterns each belonging to any one of multiple categories. The acquiring unit acquires a recognition target pattern to be recognized. The first calculator calculates, for each of the categories, a distance histogram representing distribution of the number of training patterns belonging to the category with respect to distances between the recognition target pattern and the training patterns belonging to the category. The second calculator analyzes the distance histogram of each of the categories to calculate confidence of the category. The determining unit determines a category of the recognition target pattern from the multiple categories by using the confidences. The output unit outputs the category of the recognition target pattern.
The present application concerns the visual identification of materials or documents for tracking or authentication purposes.It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
Biometric matching technology, in which a watch list is managed, multiple images of a potential suspect are accessed, and parallel pre-processing of the multiple images is controlled. Based on the pre-processing, an image of the potential suspect to use in matching against the watch list is determined and the determined image is used to search sorted biometric data included in the watch list. A subset of persons from the watch list is identified based on the search and parallel analysis of the determined image of the potential suspect against detailed biometric data associated with the subset of persons in the watch list is controlled. Based on the parallel analysis, it is determined whether the potential suspect matches a person in the watch list and a result is outputted based on the determination.
A person extraction unit extracts a person from an image input into an image input unit. An attribute extraction unit obtains an attribute of the person extracted by the person extraction unit. A motion path creation unit creates a motion path of the person from positional information within the image of the person extracted by the person extraction unit. A measurement reference coordinate setting unit sets a measurement line (a first measurement line to a third measurement line) for the motion path corresponding to the person according to the attribute of the person extracted by the attribute extraction unit. A people number counting unit counts the number of people based on positional relation between the motion path of the person created by the motion path creation unit and the measurement line set within the image.
Provided are an information processing system, an information processing method and a program capable of suitably predicting, when tracking a person with a plurality of video cameras, an image of a video camera, in which a moving body that is appearing in a video camera will subsequently appear. The information processing system of the present invention includes an interior view angle person position acquisition unit 110 for identifying a traveling direction of a moving body appearing in an image of a first video camera among a plurality of video cameras, and an appearance probability calculation/sorting unit 150 for predicting, based on the traveling direction of the moving body in the image of the first video camera, one or more second video cameras in which a possibility of the moving body that is appearing in the image of the first video camera subsequently appearing is higher than other video cameras among the plurality of video cameras.
Disclosed herein is an apparatus and method for extracting correspondences between aerial images. The apparatus includes a line extraction unit, a line direction determination unit, a building top area extraction unit, and a correspondence extraction unit. The line extraction unit extracts lines corresponding buildings from aerial images. The line direction determination unit defines the directions of the lines as x, y and z axis directions based on a two-dimensional (2D) coordinate system. The building top area extraction unit rotates lines in the x and y axis directions so that the lines are arranged in parallel with the horizontal and vertical directions of the 2D image, and then extracts building top areas from rectangles. The correspondence extraction unit extracts correspondences between the aerial images by comparing the locations of the building top areas extracted from the aerial images.
An apparatus for recognizing an iris and an operating method thereof are provided. The iris recognition apparatus recognizing an iris of an eye includes an image capturing unit to acquire an iris image of an eye, and a controller to assess the focus quality of an iris region in the iris image and then determine an iris recognition target image.
Techniques for creating and manipulating software notes representative of physical notes are described. A note management system comprises a sensor configured to capture an image data of a physical note, wherein the note is separated into one or more segments using marks, wherein each of the segments is marked by at least one of the marks. The note management system further comprises a note recognition module coupled to the sensor, the note recognition module configured to receive the captured image data and identify the marks on the note, and a note extraction module configured to determine general boundaries of the one or more segments within the captured image data based on the identified marks and extract content using the general boundaries, the content comprises content pieces, each of the content pieces corresponding to one of the one or more segments of the note.
Technologies are generally described for position-setup for gesture-based game. In some examples, a method performed under control of a gesture-based game system includes capturing, by an image capture unit, an image of a first player and an image of a second player, cropping, from the image of the first player and the image of the second player, a first sub-image of at least part of the first player and a second sub-image of at least part of the second player, respectively, determining whether to adjust the first sub-image and the second sub-image, if it is determined to adjust the first sub-image and second sub-image, adjusting the first sub-image and the second sub-image, and merging the first adjusted sub-image and the second adjusted sub-image into an output image.
A partial image extracting unit extracts images of a predetermined size and constant magnification from a tissue region. A mask generating unit generates a mask for removing a region not intended for measurement from the tissue region for each extracted image. A complete mask generating unit generates a temporary complete mask in which the masks generated for each of the images are integrated together, and generates a complete mask in which close portions among unmasked portions in the temporary complete mask are unified into one or more target regions. A measuring unit measures information pertaining to an object to be measured included in the image, and this information is measured for each of the images extracted by the partial image extracting unit. A region information calculating unit calculates, for each target region, information pertaining to the object to be measured from the measured information and from the complete mask.
The present invention provides fingerprint-based verification system and fingerprint identification method. The fingerprint-based verification system verifies identify by analyzing biometric minutiae including the ridges and pores on a fingerprint. The fingerprint identification method comprises a step for obtaining a first fingerprint, a step for obtaining a second fingerprint, and a step for comparing the first fingerprint and the second fingerprint. The present invention provides effective systems and methods for mitigating identity fraud.
Provided are a striped pattern image examination support device, method, and program. The device includes: image transformation element for transforming at least one of two striped pattern images so as to cause coordinates of charting points, which are points that correspond across the two striped pattern images, to match in a plurality of pairs of the charting points which are included in the two striped pattern images; intersecting point extraction element for calculating coordinates of intersecting points of stripes in the striped pattern images and line segments each of which connects two of the charting points in the striped pattern images; charting diagram display element for displaying the two striped pattern images after transformation by the image transformation element, and displaying figures representing charting points at positions corresponding to coordinates after the transformations of each of the charting points on the two striped pattern images.
A finger biometric sensing device may include an array of finger biometric sensing pixel electrodes and a gain stage coupled to the array of finger biometric sensing pixel electrodes. The finger biometric sensing device may also include error compensation circuitry that may include a memory capable of storing error compensation data. The error correction circuitry may also include a digital-to-analog converter (DAC) cooperating with the memory and coupled to the gain stage and capable of compensating for at least one error based upon the stored error compensation data.
A service provider receives, from a user, picture information captured by a user device from a picture mark associated with a product or service of a merchant. It determines a matching picture image by comparing the picture information with picture images in a server, previously registered by the merchant. It also determines, out of attributes previously registered by the merchant, a matching attribute set uniquely associated with the matching picture image. The attributes may be web links, mobile APPs, or any media files that the merchant desires to communicate to users about its products or services. The service provider then communicates to the user the matching attribute set to be loaded on the user device and direct the user to the web links, mobile APPs, or media files that the merchant predetermined.
Various embodiments provide a high data transfer smart card reader. In a preferred embodiment, the high data transfer smart card reader includes smart card contacts, a heat sink, a heat conductor, and a heat sink plate. The smart card contacts are configured to contact a pad in a contact area of a smart card to create an electrical connection. The heat sink is configured to physically contact a smart card to dissipate heat. The heat conductor and the heat sink plate are connected to the heat sink to maximize heat dissipation by increasing the surface area of the heat sink. The smart card contacts, the heat sink, the heat conductor, and the heat sink plate are secured to a circuit board by an encasing member.
The invention provides a semiconductor device comprising with a capacitive security shield structure which uses a set of randomly distributed dielectric or conducting particles formed within a dielectric layer. A set of electrodes can be configured as at least two sets, wherein a first set is used to measure a capacitance characteristic, and a second set is configured as non-measurement set. The electrode configuration can be altered so that multiple measurements can be obtained.
Virtual device control in a computer system is described. Examples include: obtaining a device configuration policy from firmware in the computer system, the device configuration policy defining global access permissions to at least one embedded device in the computer system applied at boot time. Obtaining a virtual device configuration policy established for at least one of a selected user or a selected virtual machine (VM), the virtual device configuration policy defining additional access permissions to the at least one embedded device. Establishing a virtual hardware definition for an instance of the selected VM executing on the computer system based on the global access permissions and the additional access permissions.
One embodiment provides a system that facilitates facilitate secure synchronization of manifests using exact network names. During operation, the system generates an interest of advertisement comprising a name of a content object of the system. This name represents a collection of objects of the system and includes a first hash that is based on a key of the system. The first hash corresponds to a respective content object hash of one or more segments of a manifest representing the collection of objects. The system also determines a request for the content object based on the name in an interest of data from a remote node.
Virtual asset creation data used to create a virtual asset is generated through a virtual asset creation system that includes primary virtual asset data. Secondary authentication data is also generated. When the virtual asset is launched, the secondary authentication data is passed to the virtual asset from the virtual asset creation system. The primary virtual asset data and secondary authentication data from the virtual asset creation system and the virtual asset, and/or one or more other sources associated with the virtual asset, are then sent to a virtual asset validation system through different communication channels. If the primary virtual asset data and secondary authentication data from the two sources match, or have a defined threshold level of similarity, the status of the virtual asset is transformed to the status of validated virtual asset eligible to receive sensitive data.
A method of scanning secure data in a data store is performed in a manner that does not expose the scan data, the files being searched, or information about when matches occur between the scan data and the files. During the scan process, encrypted versions of searched files are compared to encrypted versions of match strings, and any resulting match data is encrypted before being written into a results file. In addition, to disguise when match entries are written, during the scan one or more encrypted dummy items are written into the results file.
An outsourcing environment is described herein by which an outsourcing entity may delegate document-transformation tasks to at least one worker entity, while preventing the worker entity from gaining knowledge of sensitive items that may be contained within a non-obfuscated original document (NOD). In one example, the environment may transform the NOD into an obfuscated original document (OOD) by removing sensitive items from the NOD. The worker entity may perform formatting and/or other document-transformation tasks on the OOD, without gaining knowledge of the sensitive items in the NOD, to produce an obfuscated transformed document (OTD). The environment may then allow for the outsourcing entity to view a content-restored version of the OTD.
A server uses an encryption key to decrypt authentication information thereby facilitating communication with network-accessible applications that may be remotely located from the server. Servers can also use encryption keys to decrypt files containing sensitive data. The encryption key is obtained by a collection of software agents, each providing a portion of information necessary for generating the encryption key. Each software agent performs a respective examination, the results of which determine whether the respective portion of information is valid or not. A complete encryption key can be obtained only when all of the contributing portions of information are valid.
A device managing apparatus for managing software installed in at least one device includes a determination unit configured to determine whether a software item to be installed in the device requires license validation; a validation unit configured to perform a license validation operation on the software item for which the determination unit determines that license validation is required, depending on an available license for the software item; and a setting unit configured to set a license issued by the validation unit in the device in which the software item is installed.
Optimized testing of vulnerabilities in an application implemented by a method includes generating a first probe directed to determine whether an application is vulnerable to a first type of attack; analyzing one or more responses from the application based on the application responding to the first probe; in response to determining that the one or more responses from the application validate a first hypothesis about one or more vulnerabilities associated with the application, and generating at least a second probe to further verify the first hypothesis. The second probe focuses on discovering additional details about the application's vulnerabilities to the first type of attack or a second type of attack.
Systems, methods, computer readable media and articles of manufacture consistent with innovations herein are directed to computer virtualization, computer security and/or memory access. According to some illustrative implementations, innovations herein may utilize and/or involve a separation kernel hypervisor which may include the use of a guest operating system virtual machine protection domain, a virtualization assistance layer, and/or a detection mechanism (which may be proximate in temporal and/or spatial locality to malicious code, but isolated from it), inter alia, for detection and/or notification of, and action by a monitoring guest upon access by a monitored guest to predetermined physical memory locations.
One aspect of the invention provides a method of controlling execution of a computer program. The method comprises the following runtime steps: parsing code to identify one or more indirect branches; creating a branch ID data structure that maps an indirect branch location to a branch ID, which is the indirect branch's equivalence class ID; creating a target ID data structure that maps a code address to a target ID, which is an equivalence class ID to which the address belongs; and prior to execution of an indirect branch including a return instruction located at an address: obtaining the branch ID associated with the return address from the branch ID data structure; obtaining the target ID associated with an actual return address for the indirect branch from the target ID data structure; and comparing the branch ID and the target ID.
Systems and methods of delivering data from a range of input devices may involve detecting an availability of data from an input device, wherein the input device is associated with a default input path of a mobile platform. An input device driver can be invoked in a security engine in response to the availability of the data if a hardware component in the default input path is in a secure input mode, wherein the security engine it associated with a secure input path of the mobile platform. Additionally, the input device driver may be used to retrieve the data from the input device into the security engine.
A device and system for providing identification and medical information are disclosed. The device includes a readable code that contains medical biographical information of the subject, a programmable reporter element that is programmed to electronically store at least one particular event relating to the subject, and a signal producing element functionally related to the programmable reporter element. The system includes collecting and storing medical biographical information of a subject, embedding the medical biographical information in a readable code of the device, and scanning the readable code of the device worn by or in the possession of the subject using an appliance to retrieve the medical biographical information of the subject. The medical biographical information allows medical professionals to obtain the subject's medical information in order to provide medical care. Also disclosed is an integrated system for alerting subjects to upcoming events related to their continued care.
A method and apparatus providing a health phone utilizing a pedometer or accelerometer incorporated into a cellular telephone. The system is designed to receive activity data from the pedometer or accelerometer, and communicate the activity data to a remote server, the cellular telephone further designed to receive suggestions from the server, the suggestions generated based on the activity data received from the cellular telephone.
The invention provides methods for identifying rare variants near a structural variation in a genetic sequence, for example, in a nucleic acid sample taken from a subject. The invention additionally includes methods for aligning reads (e.g., nucleic acid reads) to a reference sequence construct accounting for the structural variation, methods for building a reference sequence construct accounting for the structural variation or the structural variation and the rare variant, and systems that use the alignment methods to identify rare variants. The method is scalable, and can be used to align millions of reads to a construct thousands of bases long, or longer.
Described embodiments enable identification of family networks using combinations of DNA analysis and genealogical information. Genealogical data is provided by users of a genealogical research service or collected from other sources and used to create family trees for each user. DNA samples are also received from the users. By analyzing the DNA samples, potential genetic relationships can be identified between some users. Once these DNA-suggested relationships have been identified, common ancestors can be sought in the respective trees of the potentially related users. Where these common ancestors exist, an inference is drawn that the DNA-suggested relationship accurately represents a familial overlap between the individuals in question. People descended from the same common ancestor are each members of a family network. Members of a family network not in a user's tree may be identified for the user, enabling the user to discover additional ancestors that might otherwise have remained unknown.
A place and route technique is provided for a programmable logic device to optimize a delay difference between a bus including a plurality of clock to out paths and a corresponding clock out path.
Systems, methods, and other embodiments associated with providing obstacle-avoidance bus routing for an integrated circuit design are described. In one embodiment, a bus routing tool is disclosed that generates a plurality of escape nodes to construct a three-dimensional routing solution graph. The bus routing tool probes a design space of the integrated circuit design to dynamically determine a location of each escape node while avoiding path blockages within the design space. By traversing the three-dimensional routing solution graph from a leaf escape node near a target location within the design space back to a root escape node near a source location within the design space, a candidate routing solution for routing a signal bus from the source location to the target location can be determined.
A rectangular interlevel connector array (RICA) is defined in a semiconductor chip. To define the RICA, a virtual grid for interlevel connector placement is defined to include a first set of parallel virtual lines that extend across the layout in a first direction, and a second set of parallel virtual lines that extend across the layout in a second direction perpendicular to the first direction. A first plurality of interlevel connector structures are placed at respective gridpoints in the virtual grid to form a first RICA. The first plurality of interlevel connector structures of the first RICA are placed to collaboratively connect a first conductor channel in a first chip level with a second conductor channel in a second chip level. A second RICA can be interleaved with the first RICA to collaboratively connect third and fourth conductor channels that are respectively interleaved with the first and second conductor channels.
Systems and techniques for circuit placement are described. An electronic design automation (EDA) tool can receive a netlist for the circuit design. Next, the EDA tool can represent the netlist as a graph, and perform fuzzy clustering on the graph to obtain a set of clusters and a set of probability values. The EDA tool can then partition and place the circuit design based on the set of clusters and the set of probability values. The EDA tool can then optimize the placed circuit design. During optimization the EDA tool can reassign at least one cell to a different layout bin based on the set of probability values.
The present invention relates a numerical method to simulate the incompressible wing-tip vortex flows. This method is called Vorticity-Refinement, which refines the added vorticity as two different forms of force multiplied by two different factors to counteract the numerical diffusions in the numerical solutions by utilizing the high-order spatial discretization and improving the stability and convergence of the governing equations for incompressible flows.
A method and apparatus are disclosed for off-line programming of multiple interacting robots. For example, a system for off-line programming of multiple interacting robots includes a computer for off-line programming and verification of program codes for multiple interacting robots and a robot controller connected to the computer to receive a download of at least one of the program codes for execution. Multiple interacting robots can be controlled by the robot controller.
A search query portion is received. A plurality of suggested search queries is identified based on the search query portion. Feature values are determined for each of the plurality of suggested search queries based on a feature display preference. A heat map of the suggested search queries is transmitted to a client computer system. The heat map contains a plurality of blocks visually representing the plurality of suggested search queries and the determined feature values.
A method, system, and/or computer program product constructs and utilizes an ontological graph. A seed term and an expansion signal are received from a user. An ontological graph is constructed based on the expansion signal as applied to the seed term. The ontological graph includes nodes representing the seed term plus other terms that are located in accordance with instructions derived from the first expansion signal, such that the seed term and the other terms share a common trait. Terms from the ontological graph are displayed as string literals in a dictionary, wherein the dictionary contains related other terms at a resolution level that is controlled by the first expansion signal from the user and the seed term.
A method of matching a first entity to a second entity by evaluating Boolean expressions includes identifying a set of criteria vertices for a second entity vertex by traversing a graph database in a manner constrained to fact vertices identified for the second entity. The graph database relates fact vertices to the criteria vertices by edges corresponding to Boolean expressions for satisfying criteria for matching first entities to second entities. The method additionally includes selecting one of the first entities based on the criteria vertices of the set. The method further includes matching the first entity to the second entity based on the selection.
Method for enriching content of a web page (2) displayed for a user on a computer (3) connected to a computerized network (5) and provided with a web browser (4), said method comprising the steps of: the web browser (4) sending a request for a web page (2) to a distant web server (6), upon receipt of the web page (2) from the web server (6), the web browser (4) parsing the web page (2) for contact information, upon detection of contact information within the web page (2), the web browser (4) sending a request for presence information (8) associated with said contact information to at least one presence server (7), upon receipt of the presence information (8) from the presence server(s) (7), the web browser (4) displaying the web page (2) on the computer (3) together with the presence information (8).
A subset of a set of components is selected for inclusion on a dynamically-generated page within a particular user context. The subset of components is selected based on scores associated with the components in the set. The score of a component is preferably determined based on measurements of user activity resulting from exposures of the components to users in the particular context.
An embodiment of the invention pertains to Web application programming interface (API) data associated with a Web API ecosystem. The embodiment comprises constructing a data structure that is selectively related to at least some of the Web API data associated with the Web API ecosystem. The embodiment further comprises commencing an analytics operation to determine specified information which is of interest to a given Web API user, wherein the given Web API user has a role that pertains to the Web API ecosystem. Responsive to commencing the operation, Web API data related to the data structure is used to determine one or more preliminary data elements, wherein at least one of the preliminary data elements comprises an answer to a specified preliminary query. Respective preliminary data elements are selectively used to determine the specified information that is of interest to the given Web API user.
Provided are systems, methods, and computer program products for determining operating hours of entities from user check-ins and check-outs. A method for determination operating hours may include obtaining check-in and check-out data for an entity having operating hours, aggregating the check-in and check-out data over an aggregation period, and determining a start time and an end time of the operating hours of the entity. The method may include aggregating the check-in and check-out data over multiple aggregation periods and determining operating hours for different aggregation periods.
A method, apparatus and data structure is provided to determine a score for an electronic document, such as a webpage, image, audio recording, video recording or other electronic content, to aid in the ranking and retrieval of the electronic document. The score for an electronic document is based on weighted subjective user ratings of the electronic document by members of a member set. Weight factors are assigned to the members of the member set who then rate the electronic document. The score is determined for the electronic document based on the ratings of the electronic document by the members in the member set where each member's rating is weighted by a weight factor specific for the member who has provided the rating. The weight factor for a member is based on ratings assigned to that member by other members in the member set.
One or more techniques and/or systems are disclosed herein for relaying a request to a process running on a computing device from a web client and receiving a response from the process. A bridge message client disposed in a web application, running in a browser on a computer, opens a local connection to a process running outside the browser. The bridge message client comprises a communication channel ID that identifies a communication channel to host the local connection to a bridge server, and a bridge message client ID facilitates communications from the bridge server to the web application. The bridge server is disposed outside of the browser environment, and can receive a request from the bridge message client and forward it to the process, and/or can receive a response to the request from the process and forward it to the bridge message client over the local connection.
A method of automatically identifying and extracting distributed online resources may include locating in a website a candidate entry list page. The method may also include verifying the candidate entry list page as an entry list page using repeated pattern discovery. The method may also include segmenting the entry list page into a plurality of entry items. The method may also include extracting from the plurality of entry items a plurality of candidate target pages. The method may also include verifying at least some of the candidate target pages as target pages including analyzing a visual structure and presentation of the candidate target pages. The method may also include extracting metadata from the target pages. The method may also include organizing the target pages and/or the metadata in one or more databases.
A method and a system for summarization of short comments are provided. The system comprises a memory to store a comments collection. The comments collection stores a plurality of comments for later access. The comments respectively include an overall rating and at least one phrase. The system also includes one or more processors to implement an aspect module to map a portion of the plurality of comments to a first aspect corresponding to an attribute of the entity. The one or more processor also implementing a rating module to determine an aspect rating corresponding to the first aspect based on the respective overall rating of the portion of the plurality of comments.
Methods and apparatus for providing travel-related information for a location to a user based on activity indications of the user that are related to the location. The location may be determined based on a set of one or more related activity indications and a travel-related score may be determined for the location that is indicative of likelihood that the user has interest in travelling to the location. The user may be provided the travel-related information for the location based on the travel-related score.
Embodiments of the present invention provide a method, system and computer program product for the dynamic structural management of an n-Tier distributed caching infrastructure. In an embodiment of the invention, a method of dynamic structural management of an n-Tier distributed caching infrastructure includes establishing a communicative connection to a plurality of cache servers arranged in respective tier nodes in an n-Tier cache, collecting performance metrics for each of the cache servers in the respective tier nodes of the n-Tier cache, identifying a characteristic of a specific cache resource in a corresponding one of the tier nodes of the n-Tier crossing a threshold, and dynamically structuring a set of cache resources including the specific cache resource to account for the identified characteristic.
A system and method for processing electronic information that includes generating a plurality of identifier codes each of which corresponds to a location and/or a place, receiving a plurality of electronic information, wherein each electronic information has a relevancy to one or more locations and/or places, associating each of the received plurality of electronic information with any of the identifier codes that correspond to the one or more locations and/or places having the relevancy to the electronic information, receiving a query relevant to at least one of the locations and/or places, identifying any of the identifier codes that correspond to the at least one of the locations and/or places relevant to the query, and responding to the query by providing the electronic information that are associated with the identified identifier codes.
A server system having one or more processors and memory stores a plurality of entities in one or more databases, where the one or more databases do not guarantee strong consistency of the stored entities. The server system executes a first query against at least a first portion of the one or more databases to generate a first set of results that is not guaranteed to be strongly consistent. The server system also executes a second query, where executing the second query includes performing a consistency operation, the consistency operation guaranteeing that a second portion of the one or more databases is strongly consistent. After performing the consistency operation, the server system generates a second set of results from the second portion and merges the first set of one or more results and the second set of one or more results.
According to one aspect of the invention, for a database statement that specifies evaluating reporting window functions, a computation-pushdown execution strategy may be used for the database statement. The computation-pushdown execution plan includes producer operators and consolidation operators. Each producer operator computes a respective partial aggregation for each reporting window function based on a subset of rows, and broadcasts the respective partial aggregation. Each consolidation operator fully aggregates all partial aggregations broadcasted from the producer operators. Alternatively, an extended-data-distribution-key execution plan may be used. Each producer operator sends rows based on hash keys to sort operators for computing partial aggregations for at least one reporting window function based on a subset of rows. Each consolidation operator receives and fully aggregates all partial aggregations broadcasted from the sort operators.
A first plurality of processors of a plurality of nodes receives an observation from a second plurality of processors of the plurality of nodes, wherein the observation includes data representing an observed entity. The second processors access a persistent data store based, at least in part, on the observation. The first processors determine one or more features of the observed entity. The second processors access the persistent data store based, at least in part, on the determined features of the observed entity. The first processors select a candidate entity based, at least in part, on the observed entity. The first processors determine a relationship between the candidate entity and the observed entity. The first processors determine a resolved entity by resolving, by the first plurality of processors, the observed entity. The second processors access the persistent data store based, at least in part, on the resolved entity.
System and method are disclosed for creating a photo calendar. A computer storage medium stores images taken in a time period spanning a plurality of capture months. A computer processor automatically divides the images into groups based the capture months, distributes the images in one of the capture month to one or more calendar months according to an adjacency distribution function, and creates a design of a photo calendar comprising a plurality of calendar months and images distributed in the calendar months.
Embodiments of the present application relate to an information searching method based on geographic location, an information searching system based on geographic location, and a computer program product for searching for information based on geographic location. An information searching method based on geographic location is provided. The method includes acquiring need information and geographic location information corresponding to a mobile terminal user, looking up a preset geographic location zone threshold value based on the need information, preconfigured mappings of preset geographical location zone information and category information, and searching for target information corresponding to the need information based on the geographic location information of the mobile terminal user and the preset geographic location zone threshold value.
Embodiments of the present invention provide a method, system and computer program product for the visualization of calendar search results. A calendar search results visualization method can include obtaining search results for a search against a data store of calendar events, selecting a sorting attribute for the search results such as a user attribute or event type attribute, counting how often the sorting attribute can be found in an event among the search results, and sorting the search results according to the count. The method also can include rendering the sorted search results in a visualization user interface organized in tabular format of events by date, in which each event is represented in the visualization user interface by an iconic representation that can vary in size according to a number of participants to a corresponding event or according to a completion status for tasks assigned during a corresponding event.
A distributed capture system is disclosed which enables digital content to be captured in various formats and interfaced with a plurality ECM) platforms which enables the distributed capture system to be seamlessly integrated with a customer's legacy ECM system. The system is configured to receive various financial records that are normally created at a financial institution, such as loan applications and customer signature cards, in various formats, such as Microsoft Word, PDF, and Printer Control Language (PCL). The financial records are directed to a virtual printer and converted to a TIFF format. The print stream associated with the text embedded in the TIFF image of the financial record is captured and compared with document classification template. The document classification template allows the document to be automatically classified and indexed. Documents are then sent to the ECM interface. The ECM interface allows financial records that are normally created at the financial institution to be converted to electronic form and stored in the financial institution's legacy ECM. By eliminating the need to purchase a new ECM, the need to convert existing data to the format of the legacy ECM is obviated.
A method for generating a natural language response to a customer inquiry includes parsing sentences in a corpus of natural language dialogs between a respective customer and an agent to extract dependencies. Each parsed sentence is represented by a dependency graph, based on the extracted dependencies. Dependency templates are generated, at least some of which are each generated from two or more of the extracted dependency graphs (e.g., using variables which each represent a group of words referring to a same topic) and are stored in a knowledge base. In response to the customer inquiry, one of the stored dependency templates is identified and a natural language response to the inquiry is generated, using the identified dependency template. The natural language response is generated based on words extracted from the natural language dialogs that are linked, in memory, to the identified dependency template.
Systems and methods are provided for detecting punctuation errors in a text including one or more sentences. A sentence including a plurality of words is received, the sentence including one or more preexisting punctuation marks. One or more punctuation marks are determined with a statistical classifier based on a set of rules, to be inserted in the sentence. The determined punctuation marks are compared with the preexisting punctuation marks. A report of punctuation errors is output based on the comparison.
This disclosure describes systems and methods for displaying images on a browser. When a user opens a page/slide in a web application, a web application client generates a unique identifier for each image on the page, combines the identifiers for each image in a URL, and forwards the URL to a web application server. The web application server then parses the request and follows the URL to render and/or fetch each requested image. The web server encodes the requested images, combines the encoded images in a response string, and returns the response string to the browser. The browser parses the response string to display the requested images and adds each encoded image to a content data model for the web application. In embodiments, the browser stores the response string in a browser cache for subsequent retrieval and display of one or more images.
A method, a computer program product, and a computer system for determination of encoding based on received code point classes are provided. The computer implemented method includes transferring data in a text form. The computer implemented method includes, in response to determining that decoding the data in text form passes, transferring some or all of the data in a binary form. The computer implemented method includes calculating code point class proportions for the data in the text form and the data in the binary form and determining a best form for transferring the data, based on comparison of the code point class proportions.
The invention concerns a method of comparing by a comparator tool a pair of electronic data files each comprising a plurality of data elements, the method comprising: identifying at least one data element in each of said files; replacing the values of said at least one identified data elements in each of said files by a same reference value; comparing the files to detect differences between values of the data elements; and generating an output report indicating said differences.
A data processing device includes: a data obtaining section obtaining time series data on a total value of current consumed by a plurality of electric apparatuses; and a parameter estimating section obtaining a model parameter when states of operation of the plurality of electric apparatuses are modeled by a factorial HMM on a basis of the obtained time series data.
An estimating computer system may iteratively estimate an unknown parameter of a model or state of a system. An input module may receive numerical data about the system. A noise module may generate random, chaotic, or other type of numerical perturbations of the received numerical data and/or may generate pseudo-random noise. An estimation module may iteratively estimate the unknown parameter of the model or state of the system based on the received numerical data. The estimation module may use the numerical perturbations and/or the pseudo-random noise and the input numerical data during at least one of the iterative estimates of the unknown parameter. A signaling module may signal when successive parameter estimates or information derived from successive parameter estimates differ by less than a predetermined signaling threshold or when the number of estimation iterations reaches a predetermined number.
A movable capacitive sensing component and plural stationary capacitive sensing components are similarly constructed and are located together. The movable capacitive sensing component includes two interdigitated electrode elements at least one of which moves in accordance with displacement of an object. The stationary capacitive sensing components includes two interdigitated electrode elements that do not move, and differ from each other in terms of relative displacement between the fixed electrode elements. The movable capacitive sensing component measures a capacitance value. Another capacitance value is estimated, from the capacitance values measured by the stationary capacitive sensing components, for the displacement indicated by the movable capacitive sensing component's measured capacitance value. The actual displacement of the object is found by subtracting the respective capacitance values and converting this result to displacement, or by converting the respective capacitance values to displacement and subtracting the respective displacement values.
An electronic calculator includes first and second display sections, a conversion rate storage unit configured to store a plurality of conversion rates, a conversion rate display unit configured to call the plurality of conversion rates in sequence from the conversion rate storage unit and display the conversion rates on the second display section, a numerical value display unit configured to display a numerical value on the first display section according to a user operation, and a numerical value conversion unit configured to convert the numerical value displayed on the first display section by the numerical value display unit so as to correspond to a conversion transition designated by a user operation, based on a conversion rate displayed on the second display section by the conversion rate display unit.
A converter member connects between an electronic device and a load media for transmitting data. The converter member includes a first plug and a second plug electrically connected with the first plug. The first plug is detachably connected to the electronic device, and the second plug is detachably connected to the load media. The first plug and the second plug are two different type plugs. The data from the load media is transmitted to the electronic device through the second plug and the first plug orderly.
Trigger routing in computational hardware such as a digital-signal processor involves routing a trigger signal from a first, master module to a second, slave module, thereby initiating an event at the slave module without involving a core processing unit.
Systems and methods are described that manage service daemons using a unified small computer system interface (SCSI) target management daemon. SCSI target management daemon SCSI target management daemon manages each service daemon operating in a SCSI target device with consideration and knowledge of each other service daemon. This unified system eliminates potential conflicts during service daemon setup and shutdown as SCSI target management daemon is aware of these potential conflicts.
The amount of power and processing capacity needed to process gesture input for a computing device can be reduced by utilizing one or more relatively low power, low resolution gesture sensors. The gesture sensors can have relatively large pixels, which provide enhanced sensitivity in low light situations. Further, the low resolution and high frame rates of the gesture sensors can enable relatively low bandwidth buses to be used, rather than dedicated image buses. These low bandwidth buses can conserve a significant amount of power, and can provide the image data from the gesture sensors to low power PIC-class microprocessors, or other such components, which can analyze image data and make basic gesture determinations without having to wake up an application processor or send data over a main bus, which can further reduce power consumption.
A method of avoiding a write collision in single port memory devices from two independent write operations is described. A first data object from a first write operation is divided into a first even sub-data object and first odd sub-data object. A second data object from a second write operation is divided into a second even sub-data object and a second odd sub-data object. The first even sub-data object is stored to a first single port memory device and the second odd sub-data object to a second single port memory device when the first write operation and the second write operation occur at the same time. The second even sub-data object is stored to the first single port memory device and the first odd sub-data object to the second single port memory device when the first write operation and the second write operation occur at the same time.
A display system comprises a mapping memory comprising a plurality of memory banks configured to store a plurality of image tiles corresponding to an image, and an image mapping component configured to assign each of the plurality of tiles to one of the plurality of memory banks according to a first mapping or a second mapping, wherein the image mapping component determines whether to use the first or second mapping based on a bank interleaving metric of the first and second mappings.
A method for reading a data block of a nonvolatile memory of a processing unit, the nonvolatile memory being subdivided into sectors; the sectors being written to consecutively in each case from a sector beginning to a sector end with different versions of different data blocks; a current version of a data block being written to a current position in a current sector; in a cache memory, for each data block, an entry being present that characterizes the respective data block.
A field apparatus includes a first memory that stores a program specifying an operation of the field apparatus; a second memory that stores parameters to be used in the field apparatus; a log generation unit configured to generate an operating log in which first information representing a type of an event generated within the field apparatus, second information representing a time at which the event was generated, and third information related to the event are associated; and a control unit that includes the log generation unit, the control unit storing the operating log in a log storage region secured in a free space in one of the first memory and the second memory.
Identifying missing test scenarios based on authorization policies, including: analyzing the authorization policies applied to non-super-users of a specific data-oriented large-scale software system in order to identify organization-specific in-use scenarios, whereby the non-super-users are usually unauthorized to irrelevant operations; comparing the identified organization-specific in-use scenarios with available test scenarios repairable by a non-programmer user, each available test scenario repairable by a non-programmer user tests at least two transactions; identifying organization-specific in-use scenarios that do not have corresponding test scenarios repairable by a non-programmer user, referred to as first set of missing test scenarios; and providing at least one of the missing test scenarios to a non-programmer user, having proper authorizations, for generating a test scenario repairable by a non-programmer user that covers the at least one missing test scenario.
A method, system and product for directing verification towards bug-prone portions. The method comprising syntactically analyzing a computer program to identify portions of the computer program that correspond to one or more bug patterns; and performing verification of the computer program, wherein the verification comprises traversing a control flow graph of the computer program and tracking symbolic values of variables of the computer program, wherein said performing comprises directing the traversal of the control flow graph to nodes of the control flow graph that correspond to the identified portions, whereby bug-prone portions of the computer program are prioritized to be verified before non-bug-prone portions of the computer program.
A method including the steps of: generating a system model, the model comprising an initial state, a transition between consecutive states and a property function defining a property that should be met for an allowable state, the initial state, transition function and property function each comprising at least one of data, operations and predicates; generating an abstracted model by approximating at least some of the data, operations and predicates with uninterpreted terms, functions and predicates respectively, to generate at least one abstracted initial state, abstracted transition function and abstracted property function within the abstracted model; performing a complete reachability analysis on the abstracted model to determine whether the system can reach an unallowable abstracted state by following the abstracted transition function; and if not, the system is verified as correct; and if so, unabstracting a trace of the transitions from the abstracted initial state to the unallowable abstracted state.
A system performance analysis user interface includes a thumbnail portion and an analysis view portion. One or more performance indicator thumbnails and/or data source thumbnails are displayed in the thumbnail portion. Each performance indicator thumbnail displays a live graph identifying performance data of an associated one of multiple performance indicators, and each data source thumbnail displays a live graph of performance of an associated data source. Additional data regarding one or more data sources, such as contribution to usage of the data source by each of multiple contributors, is displayed in the analysis view portion.
A monitoring system can monitor computing processes in clouds. The monitoring system can monitor the clouds for certain events associated with the computing processes. The monitoring system can receive, from the user, a particular event and an action to perform upon the occurrence of the event. Once received, the monitoring system can compare the information collected during monitoring against the event specified by the user. Once the event occurs, the monitoring system can perform the action associated with the event.
Data is retrieved from a stacked memory device having a plurality of slave memory chips in response to recognizing a problem in the stacked memory device. The problem is determined to be associated with a primary driver module in the stacked memory device. In response, the primary driver module is disabled and an emergency driver module is enabled. Each of the plurality of slave memory chips are selected using a multiplexing unit to retrieve data using the emergency driver module.
Embodiments of the invention relate to data placement for loss protection in a storage system. One embodiment includes constructing multiple logical compartments. Each logical compartment includes a placement policy including a set of storage placement rules for determining permitted placement of storage symbols on specific physical storage containers, and a balancing policy for determining a particular placement of the storage symbols among permitted placements for balancing the storage symbols for each volume among the physical storage containers that is useable within the placement policy.
Various systems, methods and apparatuses for creating network isolation spanning physical and virtual hosts are presented. In one embodiment, network isolation may be created between a primary (e.g., production) site and a secondary (e.g., a disaster recovery or sandbox) site. The network isolation allows testing (or other uses) on the secondary site to be non-disruptive to the normal operations of the sites, including the ability to failover during testing. Such non-disruptive network isolation allows certain communications to continue, especially communications between ports having replicated data. The network isolation may be customized in various other ways to allow certain communications to continue while preventing other communications. This invention can be used to validate application readiness, as well as to validate data correctness of individual tiers, and may be used with systems that contain multiple tiers, and include physical hosts, virtual hosts, and/or combinations of both.
An apparatus for comparing strings comprises a first and a second set of input registers, a matrix of comparator circuits wherein rows of the matrix correspond to the first set of input registers and columns of the matrix correspond to the second set of input registers, a set of row control registers wherein each register corresponds to a row of the matrix of the comparator circuits, the matrix of comparator circuits configured to compare data provided by the first set of registers with data provided by the second set of registers according to the row control registers, and an error detection circuit configured to compare results from four comparator circuits corresponding to two adjacent rows and two columns of the matrix of comparator circuits. A method that invokes the above mentioned apparatus is also disclosed herein, along with a computer program product corresponding to the method.
Managing faulty memory pages in a computing system, including: tracking, by a page management module, a number of errors associated with a memory page; determining, by the page management module, whether the number of errors associated with the memory page exceeds a predetermined threshold; responsive to determining that the number of errors associated with the memory page exceeds the predetermined threshold, attempting, by the page management module, to retire the memory page; determining, by the page management module, whether the memory page has been successfully retired; and responsive to determining that the memory page has not been successfully retired, generating, by the page management module, a predictive failure alert.
A method and technique for autonomous selection of a Data Center Cluster (DCC) for fulfilling a cloud computing service request, including a technique for grouping data centers (DCs) in a cloud network according to a ranking of eligible DCCs based on selection criteria. In various embodiments, the selection criteria may include a cluster performance metric, a cluster resource equivalence metric, a balance of resource performance metric, a DCC load index, or combination thereof. Other aspects include techniques for computing/determining each of the selection criteria.
A method of determining an estimated data throughput capacity for a computer system includes the steps of creating a first model of data throughput of a central processing subsystem in the computer system as a function of latency of a memory subsystem of the computer system; creating a second model of the latency in the memory subsystem as a function of bandwidth demand of the memory subsystem; and finding a point of intersection of the first and second models. The point of intersection corresponds to a possible operating point for said computer system.
The present invention relates to technical solutions for allocating FPGA resources in a resource pool. In an embodiment, the technical solution includes: receiving resource request for FPGA resources in the resource pool from a client; performing resource allocation operation based on resource pool state information record in response to the resource request, said resource pool state information record including utilization state information of the FPGA in said resource pool; and updating said resource pool state information record based on the result of said resource allocation operation. FPGA resource allocation can be implemented with the adoption of the technical solution of the application.
A multi-resource task scheduling method includes: classifying concurrency packets to distinguish packets with deadline and packets without deadline; ranking packets with deadline using EDF algorithm and ranking packets without deadline using SJF algorithm; estimating a virtual start time and a virtual completion time according to ranking results; determining whether packets with deadline can be scheduled successfully; if yes, determining whether there is a packet without deadline, which can be arranged to be scheduled before the packets with deadline and can shorten average completion time, existing in the packets without deadline; and if yes, scheduling the packet without deadline, which can be arranged to be scheduled before the packets with deadline, in advance. The method can shorten the average completion time of all tasks greatly under multi-resource circumstance.
Techniques are described for eliminating backpressure in a distributed system by changing the rate data flows through a processing element. Backpressure occurs when data throughput in a processing element begins to decrease, for example, if new processing elements are added to the operating chart or if the distributed system is required to process more data. Indicators of backpressure (current or future) may be monitored. Once current backpressure or potential backpressure is identified, the operator graph or data rates may be altered to alleviate the backpressure. For example, a processing element may reduce the data rates it sends to processing elements that are downstream in the operator graph, or processing elements and/or data paths may be eliminated. In one embodiment, processing elements and associate data paths may be prioritized so that more important execution paths are maintained.
Systems and methods of prioritizing execution of plans for obtaining and/or processing data based on partial execution of the plans are presented herein. In certain implementations, one or more plans may be executed. Costs associated with individual ones of the plans may be estimated based on partial execution of respective ones of the plans. Based on a comparison between the estimated costs, the execution of at least one of plans may be prioritized over at least the execution of the other ones of the plans.
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a memory address. In response to the command, the TM pulls an input value (IV). The memory address is used to read a word containing multiple result values (RVs), multiple reference values, and multiple mask values from memory. A selecting circuit within the TM uses a starting bit position and a mask size to select a portion of the IV. The portion of the IV is a lookup key value (LKV). The LKV is masked by each mask value thereby generating multiple masked values. Each masked value is compared to a reference value thereby generating multiple comparison values. A lookup table generates a selector value based upon the comparison values. A result value is selected based on the selector value. The selected result value is then communicated to the processor via the bus.
A system and method can support a distributed transaction lock in a transactional middleware machine environment. The system can use a global transaction identifier to locate a hash bucket in a transaction hash table, wherein the transaction hash table contains a plurality of hash buckets. Then, the system can lock said hash bucket in the transaction hash table, and allow only one process to access one or more global transaction entry structures in the transaction table before said hash bucket is unlocked, wherein said one or more global transaction entry structures are associated with the locked hash bucket in the transaction hash table.
Systems and methods associated with virtual machine security are described herein. One example method includes instantiating a guest virtual machine in a virtual computing environment. The method also includes installing a life cycle agent on the guest virtual machine, assigning an identifying certificate, a set of policies, and an encryption key to the guest virtual machine, and providing the certificate, policies, and encryption key to the guest virtual machine. The certificate, policies, and encryption key may then be used by the guest virtual machine to authenticate itself within the virtual computing environment and to protect data stored on the guest virtual machine.
In one embodiment, a method includes receiving a request for web-widget manipulation. The request includes a scope of manipulation. The method further includes identifying at least one managed web widget as being covered by the scope of manipulation. In addition, the method includes identifying at least one instance of the at least one managed web widget as being covered by the scope of manipulation. Further, the method includes extracting a plurality of user-interface (UI) display items relative to the at least one managed web widget and the at least one instance. The plurality of UI display items includes at least one global UI display item and at least one website-level UI display item.
Three-dimensional processing systems are provided which have multiple layers of conjoined chips, wherein at least one chip layer has calibration control circuitry that is dedicated to calibrating/configuring one or more functional chip layers, and/or performance instrumentation control circuitry for testing and collecting performance data of one or more functional chip layers.
A multi-threaded microprocessor for processing instructions in single threaded mode and multithreaded modes. The microprocessor includes instruction dependency scoreboards, instruction input coupling circuits for selectively feeding the first and second instruction dependency scoreboards; output coupling logic having first and second instruction issue outputs; first and second execute pipelines respectively coupled to the instruction issue outputs, the first execute pipeline for executing a first program thread and the second execute pipeline for executing a second program thread, independent of the first program thread; and a control logic circuit for causing dual issue of instructions from the first program thread, by the first dependency scoreboard, to both the first execute pipeline and said second execute pipeline.
In a processor core, high latency operations are tracked in entries of a data structure associated with an execution unit of the processor core. In the execution unit, execution of an instruction dependent on a high latency operation tracked by an entry of the data structure is speculatively finished prior to completion of the high latency operation. Speculatively finishing the instruction includes reporting an identifier of the entry to completion logic of the processor core and removing the instruction from an execution pipeline of the execution unit. The completion logic records dependence of the instruction on the high latency operation and commits execution results of the instruction to an architected state of the processor only after successful completion of the high latency operation.
A processor unit (200) includes: cache memory (210); an instruction execution unit (220); a processing unit (230) that detects fact that a thread enters an exclusive control section which is specified in advance to become a bottleneck; a processing unit (240) that detects a fact that the thread exits the exclusive control section; and an execution flag (250) that indicates whether there is the thread that is executing a process in the exclusive control section based on detection results. The cache memory (210) temporarily stores a priority flag in each cache entry, and the priority flag indicates whether data is to be used during execution in the exclusive control section. When the execution flag (250) is set, the processor unit (200) sets the priority flag that belongs to an access target of cache entries. The processor unit (200) leaves data used in the exclusive control section in the cache memory by determining a replacement target of cache entries using the priority flag when a cache miss occurs.
The disclosure provides a device for implementing address buffer management of a processor, including: an assembler configured to perform operations to obtain intermediate values when the assembler encodes a set instruction for an address automatic-increment value and boundary values, and to encapsulate the intermediate values into the set instruction for the address automatic-increment value and boundary values; and a processor configured to determine, according to the intermediate values, whether to perform the address automatic-increment operation or the address automatic-decrement operation, so as to achieve the address buffer management. The disclosure also provides a method for implementing address buffer management of a processor, including: a processor decodes a set instruction for an address automatic-increment value and boundary values to obtain intermediate values, and determines, according to the intermediate values, whether to perform the address automatic-increment operation or the address automatic-decrement operation when the processor performs a load or store instruction, so as to realize the address buffer management. Through the device and the method of the disclosure, the hardware costs of the processor are reduced and design requirements of the processor's time sequence and energy efficiency are met.
An apparatus includes memory storing an instruction that identifies a first register, a second register, and a third register. Upon execution of the instruction by a processor, a vector addition operation is performed by the processor to add first values from the first register to second values from the second register. A vector subtraction operation is also performed upon execution of the instruction to subtract the second value from third values from the third register. A vector compare operation is also performed upon execution of the instruction to compare results of the vector addition operation to results of the vector subtraction operation.
Embodiments include a method, system and an article of manufacture for configuring at least one processor. These include changing a sampling frequency of at least a portion of a control loop coupled to the processor in response to a change in a current input workload, determining a current error of the processor after the changing, and adjusting one or more of a clock rate and a voltage of the processor to reduce a difference between the current error and a desired error.
A technique for source code plagiarism evaluation is disclosed. Program source code files of the object orientated program are received. Class data of the program source code files are determined to comprise of at least a block of one or more design patterns wherein the one or more design patterns are stored in a database. A plagiarism value is evaluated for each of the program source code files wherein the class data of the program source code file matches with class data of an original program source code file. Program source code files wherein the class data of each of the program source code files comprises of the block of the same design pattern are categorized and the plagiarism value of the categorized program source code files are analyzed.
In a computer-implemented method for selection of relevant software bundles selection of targets in a datacenter for updating software associated with the targets is enabled. In response to the selection, software bundles relevant for updating software associated with at least one of the selected targets are displayed. Selection of the software bundles is enabled.
A method and computer program product for running a remote desktop application on a mobile device without audio interference from the other desktop applications, so the remote user applications runs as if it were a native mobile device application. A remote host desktop has a number of applications running simultaneously and producing sounds. A mobile device user selects one application and launches it on his mobile device. The selected application runs on a mobile device and the sounds produced by all other desktop applications are filtered out by special audio control driver implemented on the host system.
An image forming system includes a login management unit, a job execution unit, a log management unit, and a mode accepting unit. The login management unit is configured to manage login of a user. The job execution unit is configured to execute a job after the user has logged in. The log management unit is configured to manage a job log of the job. The mode accepting unit is configured to accept a specification of a mode to store the job log. Acceptable modes where the mode accepting unit accepts a specification include a mode where the login management unit does not permit login if the log management unit determines that there is no free space to store the job log.
An information processing apparatus comprises: a setting unit configured to accept a layout setting in a case of laying out a plurality of pages forming print data on one printing medium sheet and a punch processing setting on the printing medium; and a decision unit configured to decide on respective orientations of the plurality of pages laid out on the printing medium, based on the layout setting and the punch processing setting set by the setting unit.
A storage controller receives hints provided by one or more applications over a period of time, wherein the hints are used by the storage controller for organizing data in storage managed by the storage controller. Data on conflicts caused by the provided hints are collected over the period of time. Based on the collected data on the conflicts, one or more conflict avoidance rules are executed to reduce possibility of future conflicts.
An I/O device is coupled to a computing host. In some embodiments, the device is enabled to utilize memory of the computing host not directly coupled to the device to store information such as a shadow copy of a map of the device and/or state of the device. Storage of the shadow copy of the map enables one or both of the device and the computing host to utilize the shadow copy of the map, such as to decrease read latency. Storage of the state enables the device to save volatile state that would otherwise be lost when the device enters a low-power state. In some embodiments, the device implements one or more non-standard modifiers of standard commands. The non-standard modifiers modify the execution of the standard commands, providing features not present in a host protocol having only the standard commands.
A host for controlling a non-volatile memory card, a system including the same, and methods of operating the host and the system are provided. The method of operating the host connected with the non-volatile memory card through a clock bus, a command bus, and one or more data buses includes transmitting a first command to the non-volatile memory card through the command bus, transmitting first data corresponding to the first command to the non-volatile memory card through the one or more data buses or receiving the first data from the non-volatile memory card through the data buses, and transmitting a second command to the non-volatile memory card at least once through the command bus during or before transfer of the first data.
Methods for controlling an interface operation, the method including stopping an operation being processed in a storage device and switching the state of the storage device to a first state, when a condition for switching the state of the storage device to an idle state occurs in a command processing process according to a communication protocol; performing an operation of deleting information from a previous command stored in hardware of the storage device when the state of the storage device is switched to the first state; and switching the state of the storage device to the idle state after the operation of deleting the information on the previous command is completed, wherein in the first state, the storage device cannot be switched to the first state before the information from the previous command is deleted.
Various embodiments for storing a logical object are provided. In one such embodiment, by way of example only, incoming data is divided corresponding to a logical data object into a plurality of independent streams, associating each data chunk of a plurality of obtained data chunks with a corresponding stream among the plurality of independent streams. At least one of the obtained data chunks and derivatives thereof is sequentially accommodated in accordance with an order the obtained chunks are received, while keeping the association with the corresponding streams. A global index is generated as a single meta-data stream accommodated in the logical data object and comprising information common to the plurality of independent streams and related to mapping between data in the logical data object and the obtained data chunks.
A method and system for managing consistent data objects are included herein. The method includes detecting an operation to store a consistent data object. Additionally, the method includes detecting an attribute for the consistent data object. Furthermore, the method includes storing the consistent data object based on the attribute. In addition, the method includes determining an additional format of the consistent data object is to be stored. The method also includes generating a second consistent data object based on the additional format and storing the second consistent data object.
As disclosed herein, a method, executed by a computer, for migrating executing applications and associated stored data includes executing one or more applications in a source system environment that access data stored on a source storage device that is directly accessible within the source system environment, migrating the data to a target storage device that is directly accessible within a target system environment but is not directly accessible within the source system environment, wherein migrating the data comprises copying the data from the source storage device to the target storage device using a remote storage access protocol. A computer system and computer program product corresponding to the method are also disclosed herein.
A persistent random-access, byte-addressable storage device may be simulated on a persistent random-access, block-addressable storage device of a storage system configured to enable asynchronous buffered access to information persistently stored on the block-addressable device. Buffered access to the information is provided, in part, by a portion of kernel memory within the storage system allocated as a staging area for the simulated byte-addressable storage device to temporarily store the information destined for persistent storage. One or more asynchronous interfaces may be employed by a user of the simulated byte-addressable device to pass metadata describing the information to a driver of the device, which may process the metadata to copy the information to the staging area. The driver may organize the staging area as one or more regions to facilitate buffering of the information (data) prior to persistent storage on the block-addressable storage device. Each asynchronous access interface is configured to ensure that an order of changes to the data in the persistent storage is consistent with the order of arrival of the changes at the driver.
Disclosed are a digital device and a control method for the same. The digital device may set a device grip mode upon detecting that a user grips the digital device and maintains the multiple touch inputs to a first region set in a side of the digital device. The processor may set a portion of the first region to a first touch enable region upon detecting that a first touch input, among the multiple touch inputs maintained in the device grip mode, is released at a first position, the first touch enable region containing the first position. The processor may execute a first function in response to a touch input of touching the first touch enable region.
In accordance with one aspect of the present invention, disclosed hereunder, is a web-browsed/cloud-based portal for users and businesses that allows them manage their full online presence. Users can organize and personalize their favorite websites, communities, and applications. The interface of the system is a live tile-based online platform. Hence, the user becomes the center of the Internet and no longer has to adapt to content.
Attaching a peripheral device to a portable terminal includes determining one or more application programs operating in connection with an attached peripheral device, displaying a depiction of a plug of the attached peripheral device and the one or more application programs on a screen of the portable terminal, and, when a user drags the displayed depiction of a plug to select one of the one or more application programs, executing the selected application program.
According to an aspect, a mobile electronic device includes: a display unit, an operating unit, and a control unit. The display unit for displays a character input screen including a part of a plurality of soft key objects each associated with a process in a line. The operating unit receives input of an operation. Upon detecting a changing operation through the operating unit, the control unit changes arrangement of the soft key objects such that at least one of the soft key objects that has been displayed is not displayed and at least one of the soft key objects that has not been displayed is displayed.
A method of displaying items on a mobile terminal includes displaying a first icon group of a plurality of icons on a display of the mobile terminal, such that each icon of the first icon group is associated with an application that is executable on the mobile terminal. Also performed is detecting user contact at a first location of the display relative to a displayed location of a particular icon of the first icon group and detecting further user contact representing a dragging over a distance beginning from the first location, such that the dragging represents substantially continual user contact from the first location over the distance. Also, after the dragging occurs over a threshold distance, displaying a second group of icons in an icon display region, such that each icon of the second icon group is associated with an application that is executable on the mobile terminal.
Internet connected electrical switches can benefit from an electronic rather than mechanical means to indicate their output power level. In one embodiment a touch-controlled dimmer switch is disclosed, including an interactive, uniformly illuminated bar of light, indicating the output power state of a dimmer switch. In response to a user moving their finger on a touch-sensitive front cover the dimmer switch illuminates corresponding regions with well-defined edges on a touch sensitive cover. The illuminated regions can be elongated, wider than a typical finger and encompass the most recently touched location, thereby providing improved feedback between the finger position on a touch sensitive surface and the operating point of an electrical switch. In several embodiments a segmented backlight is used to implement the interactive illuminated bar of light by uniformly illuminating the bounds of a touch region on the front surface of the switch corresponding to a particular output power state of the dimmer switch. Means are provided to produce closely spaced elongated illuminated regions with substantially uniform intensity and well-defined perimeters, well suited for internet connected smart light switches. In another aspect a translucent layer behind the touch sensitive surface can contain decorative and interchangeable artwork, illuminated by the segmented backlight.
A reproducer is provided with members shown below. Namely, the reproducer is provided with a storage part for storing images, a vibration detection part for detecting a vibration operation by a user, a switching instruction part for instructing switching of reproduction content in slide show reproduction based on a detection result from the vibration detection part, a synthesis processing part for performing creation processing of slide show images, which are images for the slide show reproduction, based on instructions of the switching instruction part, and a slide show control part for performing the slide show reproduction of the images stored in the storage part and the slide show images.
A method for tracking an object in a plurality of frames includes obtaining a contour of an object in a frame. For each remaining frame among the plurality of frames, the following steps are performed. A probability map generator generates a plurality of probability maps containing probability values for one or more pixels for a current frame. A contour is estimated for the current frame based on the plurality of probability maps. User input is obtained for refining the estimated contour. Based on the user input, one or more local regions to be added and/or removed are identified and recorded in a local region list. The local region list is maintained and updated during the tracking process and is used together with the probability map generator.
Systems and methods to generate a playlist based on content meta data. In one embodiment, a method includes: receiving user-defined parameters; generating a playlist comprising a plurality of content portions, the generating comprising selecting the plurality of content portions from a data repository based on the user-defined parameters and further based on meta data for content stored in the data repository; and providing the playlist for display on a user device.
A method, a system and a computer program product for visually navigating contextual semantic data in a graphical overlay. The method includes overlaying a first lens, corresponding to a first domain and oriented in a first position, on the graphical overlay. A set of semantic data is displayed within the first lens. Rotation of the first lens to a second position reconfigures the semantic data such that a modified set of semantic data is displayed within the first lens. The modified semantic data and a ghosted image of the set of semantic data may be simultaneously displayed. A rotational position of the first lens is associated with various context aspects. A second lens, corresponding to a second domain, fully overlaps the first lens. Responsive to separating the first and second lenses, a circumscribed region is preserved within each of the first and second lenses while concealing a non-circumscribed region.
Provided are a resistive touch panel detection method and apparatus. A resistance variance ratio of a Y plane relative to an X plane is calculated based on voltage detections before touching and after a two-point touch occurs; and then the inclination angle is calculated based on corresponding relationship between the inclination angle and the resistance variance ratio. To obtain a distance between the two points, the present invention the resistance variance ratio and a first ratio of a resistance variance of any one of the X plane and the Y plane relative to a total resistance of the any one plane are calculated; then a second ratio of an equivalent contact resistance at a midpoint relative to the total resistance is calculated; and the distance is calculated based on the resistance variance ratio, the first ratio, the second ratio, and a correlated relationship of the distance between the two points.
The invention discloses devices and methods for transferring a tactile signal through an inert piece of material. In some embodiments, clear, impact resistant covers are employed with devices including touch-sensitive screens. The instant invention, in some embodiments, employs a plurality of magnets to allow one to input information on a touch-sensitive screen through the inert cover. Contact of a magnet pair above the cover may allow for a signal to be delivered to the touch-sensitive display via a second magnet pair that includes a stylus adapted to activate the surface of the display.
A display device includes a display panel and a touch panel. The touch panel calculates coordinate information of an input position by an electrostatic capacitive method in a first mode and calculates the coordinate information of the input position by an electromagnetic induction method in a second mode. The touch panel includes scan line groups and source line groups, which are operated as touch electrodes or touch coils on the basis of the operating mode thereof. In addition, the touch panel includes touch electrodes and touch coils, which are individually operated on the basis of the operating mode thereof.
There are provided a touch sensing device and a touchscreen device, the touch sensing device including a plurality of driving electrodes extended in a first axial direction, a plurality of sensing electrodes extended in a second axial direction intersecting with the first axial direction, an integrating circuit unit generating a first analog signal by integrating a change in capacitance generated in a first sensing electrode among the plurality of sensing electrodes and generating a second analog signal from a change in capacitance generated in a second sensing electrode adjacent to the first sensing electrode, and a subtracting unit calculating a difference in levels between the first and second analog signals.
The various methods and devices described herein relate to devices which, in at least certain embodiments, may include one or more sensors for providing data relating to user activity and at least one processor for causing the device to respond based on the user activity which was determined, at least in part, through the sensors. The response by the device may include a change of state of the device, and the response may be automatically performed after the user activity is determined.
There is provided a click-event detection device including a light source, a light control unit, an image sensor and a processing unit. The light control unit is configured to control the light source to illuminate a finger. The image sensor receives reflected light from the finger to accordingly output a plurality of bright image frames and dark image frames. The processing unit is configured to calculate a differential image characteristic between the bright image frames and the dark image frames, to determine a plurality of operating states according to the differential image characteristic, to count a residence time at each of the operating states, and to identify a click-event according to the operating states and the residence time.
A display apparatus that may enable sensing a multi-touch and a proximity object is provided. The display apparatus may display an image generated by the object on an organic light emitting diode (OLED) display panel, and may sense an invisible light that may be reflected by the object and may have entered through a hole.
A steering wheel for a vehicle, including a toroidal steering wheel surrounding an airspace and mounted in a vehicle, an array of invisible-light emitters mounted in the steering wheel to project invisible light beams across the airspace, an array of light detectors mounted in the steering wheel to detect the invisible light beams projected by the invisible-light emitters, and to detect gestures inside the airspace that interrupt the invisible light beams projected by the invisible-light emitters, and a processor connected to the light detectors to identify the gestures inside the airspace detected by the light detectors, and to control an item of equipment mounted in the vehicle, in response to the thus-identified gestures inside the airspace.
An input device and a method of switching an input mode of the input device are provided. The input device includes a main body, a state detecting module, a touchpad and a control unit. The main body includes a top surface, a bottom surface and a side surface connected the bottom and top surfaces. The state detecting module includes a first state detecting unit disposed at the bottom surface and a second state detecting unit disposed at the side surface. The first and second state detecting units detect a using state of the input device and generate first and second detecting signals, respectively. The control unit is electrically connected to the state detecting module and the touchpad, and the control unit switches the touchpad to a first control mode or a second control mode according to the first and second detecting signals.
In one embodiment, a method includes accessing, by a stylus, data associated with a particular user of the stylus, the data associated with the particular user being stored in a memory of the stylus; and by the stylus, wirelessly transmitting the data to a device in response to the stylus contacting a touch sensor of the device.
Provided is a remote control for controlling a mobile device. The remote control includes a communications transceiver configured to communicate with the mobile device and an actuator for receiving a user input while the remote control is communicatively coupled to the mobile device. The actuator comprises a touchpad including buttons for receiving the user input which can include a gesture including depressing the touchpad by a thumb; and concurrently moving the thumb across the touchpad. In response, the remote control may be operable to cause swiping a screen associated with a user interface of the mobile device; scrolling a portion of the screen; selecting and launching an application on the mobile device and controlling the functionality of the application; and/or selecting letters on a virtual keyboard provided by the user interface of the mobile device. The remote control is sized to comfortably fit in the user's palm for operation.
Systems, articles, and methods perform gesture identification with limited computational resources. A wearable electromyography (“EMG”) device includes multiple EMG sensors, an on-board processor, and a non-transitory processor-readable memory that stores data and/or processor-executable instructions for performing gesture identification. The wearable EMG device detects and determines features of signals when a user performs a physical gesture, and processes the features by performing a decision tree analysis. The decision tree analysis invokes a decision tree stored in the memory, where storing and executing the decision tree may be managed by limited computational resources. The outcome of the decision tree analysis is a probability vector that assigns a respective probability score to each gesture in a gesture library. The accuracy of the gesture identification may be enhanced by performing multiple iterations of the decision tree analysis across multiple time windows of the EMG signal data and combining the resulting probability vectors.
In one embodiment, assisting a user in performing an action in relation to an object of interest includes capturing an image of an environment, identifying boundaries of objects within the image, adaptively dividing the image into selectable cells so that edges of the cells generally aligning with boundaries of objects within the image, and detecting selection of one of the cells by the user, the cell encompassing at least part of the object of interest upon which the user wishes an action to be performed.
The present specification relates to a wearable display and a method of controlling therefor, and more particularly, to a method of updating information displayed in the wearable display by recognizing opening and closing of eyes of a user wearing the wearable display.
According to one embodiment, a method for power management of a compute node including at least two power-consuming components is provided. A power capping control system compares power consumption level of the compute node to a power cap. Based on determining that the power consumption level is greater than the power cap, actions are performed including: reducing power provided to a first power-consuming component based on determining that it has an activity level below a first threshold and that power can be reduced to the first power-consuming component. Power provided to a second power-consuming component is reduced based on determining that it has an activity level below a second threshold and that power can be reduced to the second power-consuming component. Power reduction is forced in the compute node based on determining that power cannot be reduced in either of the first or second power-consuming component.
An electronic device includes a first supply target unit that accepts supply of power from an external power supply, a second supply target unit that accepts supply of power from a battery, a main body, and a controller, wherein the controller starts to accept supply of power from both the external power supply and the battery and starts to output, to the main body, a voltage of the power supplied from both the external power supply and the battery in a case where a predetermined time has elapsed since start of a predetermined operation of the main body while a voltage of power accepted from the external power supply has been output to the main body.
An electronic apparatus includes a casing, a fan module, and at least one reinforcing structure. The casing includes a lateral side. The fan module is located in the casing. The reinforcing structure is located in the casing and between the lateral side and the fan module, and the reinforcing structure serves to enhance the support strength of the casing between the lateral side and the fan module.
Devices for providing protection against intrusion in order to protect at least one electronic component. One example of the device includes an enclosure, surrounding the electronic component, which is proof against a specific type of radiation, and at least one piece of equipment selected from a receiver and a transmitter of radiation of that specific type, which is arranged inside the enclosure and substantially tuned to another piece of equipment that is complementary and disposed outside the enclosure. The device also includes a detection module suitable for detecting an intrusion if at least one receiver receives radiation of that specific type.
A locking mechanism involves a movable member and a fixed member. The fixed member has single-locking and double-locking features, as does the movable member. The single-locking features can be engaged and disengaged by movement of the movable member orthogonal to an axis. The double-locking features can be engaged by motion of the movable member along the axis orthogonal while the single-locking features are engaged.
A stop mechanism of a helm device includes a rotation member, rotatable disks, fixed disks, and an electromagnet which presses these disks against one another. An inversion control pin is provided in a steering shaft. Slits are formed in a cylindrical portion. Both ends of the inversion control pin are inserted into the slits. The slits are shaped to be elongated in a circumferential direction of the cylindrical portion. A first pin receiving stopper wall is formed on one end of the slits. A second pin receiving stopper wall is formed on the other end of the slits. The inversion control pin can move within the range of inversion allowance angle between the pin receiving stopper walls.
Disclosed is a compensation circuit for a common voltage according to a gate voltage, which compensates the common voltage in accordance with variation in gate high voltage, to obtain an optimal common voltage. The compensation circuit includes a divider to divide a gate high voltage, an adder to add a fed-back common voltage to a voltage output from the divider, and a differential amplifier to differentially amplify a voltage output from the adder, and to output the amplified voltage as a compensated common voltage.
A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
A wireless signal transmission module for a diagnostic system of an industrial machine is provided including a case, an independent power source, a sensor arranged to take measurements, in particular vibration measurements, a connector having a first end connected to the case and a second end connected to the sensor, a fixing system connected to the sensor and arranged so as to fix the wireless signal transmission module to the industrial machine, an electronic card provided with means of control arranged so as to control the supply cycle of the sensor in a sleep phase, a first stabilisation phase and an operating phase.
A substrate processing apparatus includes a plurality of functional sections 200, 300, 400 and 500 each of which is selectively set in an operating state where an assigned processing thereof is executable on a substrate and a standby state where an energy consumption amount is less than in the operating state, and an apparatus controller 50 which controls a state of each functional section 200, 300, 400, 500 between the operating state and the standby state and causes the functional section in charge of the assigned processing corresponding to a recipe to be set in the operating state and perform the assigned processing in executing the recipe specifying a processing procedure on the substrate. If an execution planned recipe, which is the recipe planned to be executed later, is given, the apparatus controller 50 specifies the functional section capable of being in charge of the assigned processing corresponding to the execution planned recipe out of the plurality of functional sections 200, 300, 400 and 500 and obtains a resource consumption amount necessary to recover the specified functional section specified by the specifying operation to the operating state.
Disclosed are a central control system and a method for setting a control point thereof. A central controller or a control point generator generates a control map in which control points are indicated, and the control points and attribute data of devices such as indoor units on the spot in actuality are automatically matched through a mobile terminal. Also, attribute data required for setting a control point is made into a database by using a dedicated tool such as the central controller or the control point generator, thus automatically setting control points. Also, the central control system can be installed by setting attribute data of the respective control points by using a wireless solution such as a mobile terminal, without having technical knowledge.
Various embodiments of the invention provide a control framework for robots such that a robot can use all joints simultaneously to track motion capture data and maintain balance. Embodiments of the invention provide a framework enabling complex reference movements to be automatically tracked, for example reference movements derived from a motion capture data system.
A timer assembly is configured with a motor with slim construction so as to provide a thinner and more compact timer assembly. A timer assembly with a thinner profile and reduced thickness is achieved by incorporating the motor within the timer's baseplate. Additional advantages may be achieved by positioning the motor within an area defined by the baseplate and the time indicator, or by mounting the motor in an offset manner with respect to the baseplate. Further, the orientation of the motor may be changed to mount the motor to the front or rear of the baseplate to provide for an additional thickness reduction.
The invention concerns a magnetic device for regulating the relative angular velocity of a wheel and of at least one magnetic dipole integral with an oscillating device. The wheel or the dipole is driven by a driving torque. The wheel includes a periodic, ferromagnetic pole path which alternates according to a center angle and the at least one dipole is arranged to permit magnetic coupling with the ferromagnetic path and oscillation of the dipole at the natural frequency of the oscillating element during the relative motion of the wheel and of the magnetic dipole to regulate the relative angular velocity. The wheel further includes an assembly to dissipate the kinetic energy of the at least one dipole when it moves away from the ferromagnetic path.
A timepiece includes a dial, a day dial disposed on the rear side of the dial, and a movement that rotates the day dial by a predetermined angle every day. Seven openings corresponding to the seven days of the week are formed in the order thereof in the dial, and a mark is formed on a surface of the day dial on the side facing the dial. Whenever the day dial rotates by the predetermined angle, the mark sequentially appears in the order of the days of the week through one of the seven openings when the dial is viewed from the front side.
In the control method for an analog display device fitted to a timepiece movement, the motor is used both for driving a first indicator of a time parameter and a second periodically driven indicator. To this end, the motor is controlled such that, when the first indicator is in an operating mode and the second indicator is arranged to remain substantially immobile, said first indicator is driven in rotation by the motor alternately. The first indicator is driven in a forward direction, to display the time parameter, during a first period in which a periodic actuation wheel set is simultaneously driven in positions of its area of non-actuation, and in a backward direction, in accelerated mode, during a second period following the first period, before the periodic actuation wheel set is driven in a position of its area of actuation.
A method for regulating time-keeping of a mechanical timepiece movement intended to operate in a low-pressure atmosphere, includes the successive steps of: placing the movement in a low-pressure atmosphere pre-established for normal operation of the movement; measuring the gain or recoil (typically a gain +ΔP) of the time-keeping precision of the movement at this low pressure; returning the movement to ambient atmospheric pressure; at the ambient atmospheric pressure, regulating the movement to compensate for the previously measured gain or recoil; and returning the movement to the low-pressure atmosphere pre-established for normal operation of the movement.
A metal pivot pin includes at least one pivot at at least one of its ends, and the metal is an austenitic steel, an austenitic cobalt alloy, or an austenitic nickel alloy in order to limit a sensitivity of the pin to magnetic fields. At least an outer surface of the at least one pivot is hardened to a predetermined depth relative to the rest of the pin in order to harden the at least one pivot.
A displaying method, a displaying apparatus and a displaying system for providing holographic images to a plurality of viewers simultaneously are provided. The displaying method comprises: tracking motions of M viewers and eye positions thereof, adjusting rotation angles of programmable mirrors allocated to each of the viewers according to the motions of the eye positions of the viewer, it is predefined that each pixel position of the projection screen corresponds to N adjacent ones of the programmable mirrors; modulating a corresponding left-eye 3D image and a corresponding right-eye 3D image according to the tracked motions of the eye positions of each of the viewers and the rotation angles of the programmable mirrors allocated to the viewer, and projecting the left-eye 3D image and the right-eye 3D image onto the projection screen to control optical projections incident to the left eyes and the right eyes of different viewers.
An image forming apparatus includes an apparatus main-body to and from which a process cartridge can be attached and detached. The process cartridge includes an image carrying member to carry an image, a charging member to charge the image carrying member, a cleaning member to clean the charging member by contacting it, and a force receiving unit to receive a force for moving the cleaning member in a longitudinal direction of the image carrying member. The apparatus main-body includes a slope portion which slopes in a direction in which the process cartridge is attached and contacts the force receiving unit to apply the force in a process where the process cartridge is attached to the apparatus main-body, and the slope portion applies the force to the force receiving unit to move the cleaning member from an inside to an outside of a region where an image can be formed.
An image forming apparatus includes a plurality of photosensitive members and a plurality of developing units, each of which includes a developing roller actable on the photosensitive member and movable relative to the photosensitive member. A movable member moves between an inside and an outside of a main assembly, and a mounting portion, provided in the movable member, supports the plurality of developing units, which are detachably mountable to the mounting portion. An interrelating member, movable in interrelation with movement of the movable member, moves the plurality of developing units in an upward direction relative to the plurality of photosensitive members when the movable member is moved from the inside to the outside of the main assembly.
An image forming apparatus includes a heat generator configured to generate heat in the image forming apparatus; a converter including a capacitor to convert AC power supplied from an external power supply into DC power for a load unit; a thermoelectric transducer configured to convert the generated heat into DC power for the load unit; a detector configured to detect a voltage of the AC power; and a controller configured to cause the converter to continue supplying the DC power to the load unit when a first elapsed time elapsed since the detected voltage drops below a rated voltage is shorter than a first time period shorter than an upper limit of a period of time over which the capacitor is dischargeable, and cause the thermoelectric transducer to supply the DC power to the load unit when the first elapsed time exceeds the first time period.
An image forming apparatus includes an intermediate transfer belt that transports a toner image, a second transfer member that performs second transfer that transfers the toner image on the intermediate transfer belt to a recording medium, an opposed member that is opposed to the second transfer member, a recording medium guide member that guides one surface of the recording medium to a second transfer position, and a holding member that is rotatably arranged in contact with an inner peripheral surface of the intermediate transfer belt so as to satisfy the following relationship: L2/L1≦0.5 or about 0.5, where L1 is a distance between the second transfer position and a distal end of the recording medium guide member, and L2 is a distance between the second transfer position and a contact position of the holding member with the inner peripheral surface of the intermediate transfer belt.
An image forming apparatus includes an accommodating container provided at one end thereof with a toner supply port, a stirring conveying member that conveys toner to the supply port, a rotational driving unit that rotationally drives the stirring conveying member, a current detection unit that detects a driving current, an overload detection section that detects that the stirring conveying member is in an overload state when the driving current is within a range of an excess current, an unevenness determination section that determines whether the toner has been unevenly accumulated at the one end or the other end of the accommodating container, and a cause determination section that determines that a cause of the overload is uneven distribution of the toner when the overload state of the stirring conveying member is detected and being determined that the toner has been unevenly accumulated at the one end or the other end.
An image forming apparatus includes: an image carrier; a development unit configured to develop, as a toner image, an electrostatic latent image formed on the image carrier; a transfer unit configured to transfer the toner image to a medium to which a toner image is to be transferred; a cleaning unit configured to recover toner remaining on the image carrier after transferring the toner image; a lubricant supply unit configured to supply lubricant on the image carrier; a charge unit disposed between the development unit and the cleaning unit, along a surface of the image carrier; and a control unit configured to perform a first mode and a second mode, the first mode configured to form the toner image, the second mode configured to allow the charge unit to increase the amount of charge on toner reaching the cleaning unit relative to that in the first mode.
An image forming apparatus includes a plurality of latent image bearers, a latent image writer, a plurality of developing units, a primary transfer unit, a secondary transfer unit, an adjuster, a pattern image formation controller, a color deviation detector, a color deviation correction controller, and an image-formation-mode setting unit. The color deviation correction controller executes color deviation correction control in the separated state. The image-formation-mode setting unit sets a normal linear-velocity image formation mode in which an image is formed at a normal linear velocity and at least one non-normal linear-velocity image formation mode including a low linear-velocity image formation mode in which an image is formed at a low linear velocity slower than the normal linear velocity. A plurality of image formation velocities including the normal linear velocity and the low linear velocity is set, and an execution timing of the color deviation correction control in image formation at the normal linear velocity and an execution timing of the color deviation correction control in image formation at the low linear velocity are set independently from each other.
A fixing device includes a guide disposed downstream from a fixing nip formed between a fixing rotator and a pressure rotator, through which a recording medium is conveyed. A pressure rotator side separator, disposed downstream from the fixing nip in a recording medium conveyance direction, includes an opposed tip disposed opposite an outer circumferential surface of the pressure rotator and a separation-conveyance face that separates the recording medium from the pressure rotator. The opposed tip and the separation-conveyance face define a hypothetical circle having a curvature not smaller than 1/20 that intersects a guide face of the guide at an intersection at which a hypothetical tangent is tangent to the hypothetical circle. The hypothetical tangent and the guide face define a downstream intersection angle that is downstream from the hypothetical tangent in the recording medium conveyance direction and is greater than 90 degrees.
A fixing device includes a heating roller and a pressuring roller, a first holding member, a supporting member and a temperature detecting part. The heating roller and pressuring roller sandwiches and heats a sheet to fix a toner image formed on the sheet onto the sheet. The first holding member has a facing part facing to a circumference face of the heating roller to hold the heating roller. The supporting member is made of material with high heat resisting property as compared with the first holding member, arranged between the facing part of the first holding member and the circumference face of the heating roller so as to face to the circumference face of the heating roller, and formed in an elongated shape along an axial direction of the heating roller. The temperature detecting part is arranged in the supporting member to detect temperature of the heating roller.
A fixing unit for fixing a toner image includes a fixing device and a guide member. The fixing device includes a fixing roller having a heater inside thereof and a pressing roller disposed opposite the fixing roller. The pressing roller presses against the fixing roller and fixes a toner image formed on a transfer medium. The guide member guides the transfer medium to the fixing device. The guide member includes a metal base member including at least one coating layer.
A fixing device includes a fixing rotary body rotatable in a predetermined direction of rotation and a heater disposed opposite and heating the fixing rotary body. An opposed body contacts the fixing rotary body with releasable pressure therebetween to form a fixing nip therebetween through which a recording medium is conveyed. A heat shield is interposed between the heater and the fixing rotary body and movable in a circumferential direction of the fixing rotary body between a home position where the heat shield is disposed opposite the heater indirectly and a shield position where the heat shield is disposed opposite the heater directly to shield the fixing rotary body from the heater. A controller is operatively connected to the heat shield to move the heat shield to the home position when a print job is finished.
An image forming apparatus includes a first photosensitive member, having a first outer diameter, a toner image being formed on the first photosensitive member, and a second photosensitive member, having a second outer diameter, a toner image being formed on the second photosensitive member, the second outer diameter being greater than the first outer diameter. A second transfer roller in relation to the second photosensitive member is disposed on a downstream side of a first transfer roller in relation to the first photosensitive member in a conveyance direction of an intermediate transfer belt. A pressing force of the second transfer roller applied to the second photosensitive member is set to be greater than a pressing force of the first transfer roller applied to the first photosensitive member.
An image forming apparatus includes a toner-image forming part that forms a toner image; a first transfer part that transfers the toner image to an intermediate transfer body; a second transfer part that contacts a back surface of a recording medium to transfer the toner image on the intermediate transfer body to the recording medium; and a fixing part including a fixing member that is heated to fix the toner image to the recording medium and a pressure member that transports the recording medium in cooperation with the fixing member by pinching the recording medium therebetween. The maximum width, in the axial direction, of the second transfer part in which it is capable of transferring the toner image to the recording medium is larger than the maximum width, in the axial direction, of the fixing member in which it is capable of fixing the toner image to the recording medium.
A unit assembly (10) includes an image forming unit (20) and an intermediate transfer unit (40), and is configured insertably/removably with respect to an apparatus main body. The image forming unit (20) includes a plurality of process units (200A to 200D) and a joint member (80) that joints the plurality of process units (200A to 200D). The intermediate transfer unit (40) is held by the image forming unit (20). The intermediate transfer unit (40) and the joint member (80) have a first positioning section (611, 612) for mutually relative positioning.
Provided is a liquid developer supply device including plural accommodation tubs that respectively accommodate a liquid developer, a high concentration liquid developer, a dilution liquid and a standard concentration liquid developer, a first detection section that detects a solid component concentration of the liquid developer, and an amount of the liquid developer that is accommodated in the accommodation tubs, and a control section that controls the solid component concentration of the liquid developer to within the concentration range by supplying at least one of the high concentration liquid developer and the dilution liquid to an accommodation tub in which the liquid developer is accommodated based on detection results that are detected by the first detection section, and controls the amount of the liquid developer to greater than or equal to a predetermined amount by supplying the standard concentration liquid developer.
An image forming apparatus includes an apparatus body; plural developing devices arranged in a first direction in the apparatus body; plural developer housing containers that are arranged in a second direction intersecting with the first direction and house developers to be respectively supplied to the developing devices; plural transport devices that respectively transport the developers to the developing devices from the developer housing containers; an intermediate transfer; and a transfer device. The developing devices include a first developing device located near the transfer device, and a second developing device located farther from the transfer device than the first developing device. The transport devices include first and second transport devices that respectively transports developers to the first and second developing devices. A transport distance of the developer transported the first transport is larger than that of the developer transported by the second transport device.
A developer holding apparatus includes a first chamber, a second chamber, a communication port, and a shutter. The first chamber holds a developer material therein. The second chamber is adjacent the first chamber, and holds the developer material therein. The first chamber communicates with the second chamber through the communication port. The shutter opens and closes the communication port.
An image forming apparatus is provided that includes a first transmission mechanism transmitting a driving force from a driving source to a first development roller, a second transmission mechanism transmitting the driving force from the driving source to a second development roller, and a drive switching mechanism disposed between the driving source and the first transmission mechanism and between the driving source and the second transmission mechanism, the drive switching mechanism including a switching gear movable along a rotational axis direction of the first development roller, between a first position to transmit the driving force to the first transmission mechanism and the second transmission mechanism, and a second position to restrict the driving force from being transmitted from the driving source to the first transmission mechanism and allow the driving force to be transmitted from the driving source to the second transmission mechanism.
Provided is an electrophotographic photosensitive member excellent in suppression of image deletion and electric potential variation. The surface layer of the electrophotographic photosensitive member comprises a hole transporting substance. The hole transporting substance is one of a compound consisting of a carbon atom and a hydrogen atom, or a compound consisting of a carbon atom, a hydrogen atom, and an oxygen atom. The hole transporting substance comprises a conjugate structure containing 24 or more sp2 carbon atoms. The conjugate structure comprises a condensed polycyclic structure comprising 12 or more sp2 carbon atoms. A ratio of a number of sp2 carbon atoms is 55% or more based on a total number of carbon atoms in the hole transporting substance, and a ratio of a number of sp3 carbon atoms is 10% or more based on a total number of carbon atoms in the hole transporting substance.
A movable stage system is configured to support an object. The stage system comprises an object table configured to support the object and an object table support defining an object table support surface configured to support the object table. The object table support comprises at least one first actuator to drive the object table support in a first driving direction substantially parallel to the object table support surface. In a projection on a plane parallel to the object table support surface the at least one actuator is spaced with respect to the object table in a direction perpendicular to the first driving direction such that the risk on slip between the object table support and the object table supported thereon is decreased.
In one embodiment, a method of forming a resist pattern on a substrate is provided. Information of a template pattern formed on a template based on template pattern data is obtained. A resist coating distribution is set based on the information of the template pattern. A resist is formed on a substrate based on the resist coating distribution. The template is brought into contact with the resist formed on the substrate so that the resist is filled into the template pattern formed on the template. The filled resist is cured. The template is separated from the cured resist so that a resist pattern is formed on the substrate.
The present invention provides a polymerizable composition for a solder resist, including an infrared ray shielding material, a polymerization initiator, and a polymerizable compound, and a solder resist pattern forming method using the polymerizable composition for a solder resist.
A pellicle was well as an assembly of photomask plus pellicle is proposed in which the conventional agglutinant layer which bonds the pellicle to photomask is replaced by male and female screws and elastic body layer; in particular the pellicle frame is screwed to the photomask while the sealing of the space within the pellicle frame is secured by the elastic body layer.
A projector includes an optical engine unit including a light source unit configured to emit light, a light modulating unit configured to modulate, according to image information, the light emitted from the light source unit, and a projecting unit configured to project the light modulated by the light modulating unit, a connecting unit connectable to a bulb socket, a power supply unit configured to supply electric power received from the connecting unit to the optical engine unit, and a cooling unit arranged between the connecting unit and the optical engine unit and configured to circulate the air to cool the power supply unit and the optical engine unit.
A mounting device typically used for mounting line-of-site equipment, the mounting device including leg members that can fold into a trough like body of the mounting device, and further including a strap spool connected to an end portion of the mounting device. A strap on the strap spool can be unspooled and used to attach the mounting device to a surface.
In one embodiment of an enclosure device, a camera casing and light source casing are secured to a plate frame, and the enclosure device is configured to be mounted to an arm, such as a robotic welding arm. A shutter mounting arm may also be secured to the plate frame. A flap may be pivotally mounted to the distal end of the shutter mounting arm, such that the flap may be actuated between a first and second position by an actuator cooperatively engaged with the flap. The first position may be defined as to protect a camera lens positioned in the camera casing and a light source lens positioned in the light source casing. The second position may be defined as to not obscure a line-of-sight from either the light source and/or the camera to the work piece on the arm. A light source casing may be sandwiched between two side plates that are generally configured as mirror images of one another. The light source casing housing a light source may be configured as a laser designed to measure distances.
The present invention is directed to an electrophoretic slurry composition and an electrophoretic display device comprising the same, where the electrophoretic slurry comprises charged particles; polymer beads comprising an acryl- or vinyl-based repeating unit; and a fluid medium. Accordingly, the present invention has a high reactivity to a driving voltage, sustains images or text for a predetermined period of time or longer even when the driving voltage is switched off, and provides a high contrast ratio and enhanced visibility to implement high-quality text or images.
Provided is a liquid crystal display device of VAIPS mode, which uses a liquid crystal material having negative dielectric anisotropy (Δ∈<0), and has a high response speed, a wide viewing angle, a high transmittance at the time of light transmission, a high black level at the time of light blockage, and an excellent contrast ratio. Disclosed is a liquid crystal display device including a first substrate, a second substrate, and a liquid crystal composition layer having negative dielectric constant, which is interposed between the first substrate and the second substrate, the liquid crystal display device being an electro-optical display device which has a plurality of pixels, and in which each of the pixels is independently controllable and has a pair of a pixel electrode and a common electrode, the two electrodes are provided on at least one substrate of the first substrate and the second substrate, and the long axis of the liquid crystal molecules of the liquid crystal composition layer is in a substantial vertical alignment or a hybrid alignment with respect to the substrate surface.
According to one embodiment, a liquid crystal display apparatus includes an array substrate, a counter-substrate and a liquid crystal layer formed of a negative liquid crystal material. The array substrate includes a common electrode, an insulating film, a plurality of pixel electrodes each provided with a slit, and a first alignment film. A ratio of a liquid crystal capacitance to a capacitance of the first alignment film (liquid crystal capacitance/alignment film capacitance) is equal to or smaller than a predetermined value. The formula (es/d_LC)/(e_PI/d_PI)≦0.0599 is satisfied.
A backlight module and a display device having the backlight module are disclosed. The backlight module includes tricolor light sources, a light combining unit, a linear reflection unit, and a two-dimension reflection unit. The light combining unit is configured to combine tricolor beams to a white light beam. The linear reflection unit includes a plurality of first micro electro mechanical systems (MEMS) reflectors arranged in a line, and is configured to periodically reflect white light beams. The two-dimension reflection unit includes a plurality of second MEMS reflectors arranged in rows and columns, and the second MEMS reflectors in each row faces and interacts with a first MEMS reflector. The second MEMS reflectors are configured to periodically reflect light beams emitted from the linear reflection unit, to form a surface light source.
A slim bezel liquid crystal display device includes a rear enclosure, a front enclosure mating the rear enclosure, and a liquid crystal display module arranged inside the rear enclosure. The quid crystal display module has two opposite sides each forming a raised portion that includes a constraint section and an extension section extending from a middle portion of a free end of the constraint section. The rear enclosure forms retention sections in the form of recesses corresponding to the extension sections, such that the retention sections are respectively receivable in the recesses so as to fix the liquid crystal display module in the rear enclosure.
Disclosed are a flat panel type image display device and an assembly method thereof which improve a coupling structure between a panel guide and a bottom case in a clear borderless design and thus increase coupling force therebetween and durability of the panel guide and the bottom case and enhance product reliability. The flat panel type image display device includes an image display panel, a panel guide having a loading part to which the image display panel is attached, and a side surface part bent from the loading part such that a plurality of first fixing holes and a plurality of second fixing holes are alternately disposed on the side surface part, and a bottom case having a plurality of first protruding fixing parts and a plurality of second protruding fixing parts alternately disposed on side surfaces thereof, and fixed to the inside of the panel guide.
An electro-optic device includes an electro-optic panel, a transparent protective member disposed at a viewer side of the electro-optic panel, an adhesive provided between the electro-optic panel and the transparent protective member, and a gas barrier film provided on a surface of the transparent protective member at a side opposite to the viewer side.
Contact lenses may be designed with locally thinned regions to increase oxygen transmissibility to the eye. The locally thinned regions are preferably positioned outside of the optic zone and in the thicker peripheral zone. For a contact lens formed from a specific material, creating local thinner regions, for example, dimples in the back curve surface of the lens, provides an effective and efficient means for increasing oxygen diffusion.
Image stabilization systems and methods include a detector configured to detect images, an actuator coupled to the detector, a sensor coupled to the detector and configured to detect motion of the detector, and an electronic processor in communication with the sensor and the actuator, where the electronic processor is configured to, for example: (a) receive information about motion of the detector from the sensor; (b) determine components of the motion of the detector, and associate a class with each of the determined components; (c) identify components to be compensated from among the determined components based on the associated classes; and (d) generate a control signal that causes the actuator to adjust a position of at least a portion of the detector to compensate for the identified components.
A light deflection element is capable of deflecting incident light so as to follow a position of an observer and suppressing reduction in intensity of light that reaches eyes of the observer regardless of their position. The light deflection element includes: a first optical element configured to deflect incident light; a second optical element configured to change a deflection direction of emitted light by changing a refractive index thereof according to a voltage applied thereto; a third optical element; and a control section configured to control the voltage applied to the second optical element. At least one of interfaces between the first and second optical elements and the second and third optical elements is an aspheric surface. The aspheric surface has an optical power that compensates enlargement of the emitted light which is caused by refractive index distribution caused when a voltage is applied to the second optical element.
An eyepiece for a head wearable display includes a light guide component for guiding display light received at a peripheral location offset from a viewing region and emitting the display light in the viewing region. The light guide component includes an input surface oriented to receive the display light into the light guide component, an eye-ward facing side having a first curvature, a world facing side having a second curvature, a total internal reflection (“TIR”) portion disposed proximal to the input surface to guide the display light using TIR, and a partially reflective portion disposed distal to the input surface to receive the display light from the TIR portion and guide the display light to the viewing region using partial reflections. The first and second curvatures of the eye-ward and world facing sides together operate to adjust the vergence of the display light to virtually displace an image.
An unobscured afocal three-mirror telescope can provide a two-axis gimbal architecture that is more compact, more lightweight, and less expensive than traditional coudé path approaches. The telescope can create a real exit pupil and position the exit pupil on a 90-degree fold mirror. Two orthogonal rotational axes can intersect substantially at or about the center of the telescope's exit pupil and on or about the center of the last fold mirror.
The illustrative embodiments provide for a computer implemented method, computer readable medium, and data processing system for adjusting a perceived image seen through an optical observation device. The azimuth-elevation-rotation of the optical observation device is measured relative to an observer. The field of view observed through the observation device appears with at least one of rotated and inverted optical translation relative to observation of the object with an unaided eye of the observer. Based on the celestial coordinate system inherent in the design of the mounting of the optical observation device, moving optical observation device in the optical translation direction, wherein the field of view moves in the optical view direction, and wherein the celestial coordinate system is selected from a group consisting of an equatorial coordinate system and an azimuth-elevation coordinate system.
An imaging system for digital stereo microscope is disclosed, wherein the system comprising two camera units with each camera unit comprises a lens and the two lenses of the two camera units are focused below the respective lens and optical axes of both lenses are arranged to focus at a same point; a main controller configured to provide both sensors with a common trigger signal for outputting image data and a common pixel reference clock signal for each sensor to generate its own pixel clock signal; a synchronous synthesizer for generating synthesized image data with left eye image data located on the left side and the right eye image data located on right side by synchronizing and synthesizing the left eye data and the right eye image data output by the respective sensor; the synthesized image data is compresses and encoded in the main controller to generate RGB image data corresponding to parallel image data; a stereoscopic display convertor for receiving the RGB image data and converting the received RGB image data into a format that is recognizable by a stereo display.
An imaging lens substantially consists of a negative first lens group and a positive second lens group in this order from the object side. The first lens group substantially consists of only a first lens, which is one biconcave lens. The second lens group substantially consists of, in the following order from the object side: a cemented lens, which is formed by bonding a positive lens and a negative lens, in this order from the object side, and which has a positive refractive power as a whole; an aperture stop; a positive lens; and a negative lens. The imaging lens is configured to satisfy the conditional expressions (1a): 0
A compact, small F-value imaging lens with a wide field of view which corrects aberrations properly. Its elements are arranged in order from an object side to an image side: an aperture stop, a positive first lens having convex surfaces on the object and image sides, a negative second lens having a concave image-side surface, a meniscus positive third lens having a convex image-side surface, and a negative double-sided aspheric fourth lens having a concave image-side surface. With an F-value smaller than 2.4, it satisfies conditional expressions (1) to (3): 0.8
There is provided a lens module including: a first lens having positive refractive power; a second lens having positive refractive power; a third lens having refractive power; a fourth lens having negative refractive power; a fifth lens of which an object-side surface is convex; and a sixth lens having an inflection point formed on an image-side surface or an object-side surface thereof.
An imaging lens includes first to fifth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant lens parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
A controller for microscope lenses for correcting spherical aberration and for adjusting particularly difficult to access microscope lenses to an optimum of imaging quality, enabling automatic adjustment of the different actuators of a microscope lens, to effect a simple, cost-effective, user-friendly, and precise balance, particularly of cover slip deviations and different base thicknesses of Petri dishes for the purposes of increasing imaging quality. At least two movable elements of a microscope objective supporting lenses or lens groups, are provided in a movable manner in the axial direction along the optical axis of the microscope objective relative to the housing of the microscope lens in a motor-actuated manner by way of respective adjusting rings. A controller externally controlled and disposed in the microscope lens is provided for storing different characteristic curves for paths of motion of the movable elements.
An optical cable is provided. The optical cable includes a cable body having an outer surface and an inner surface defining a lumen and one or more optical transmission elements located within the lumen. The optical cable includes a groove array comprising a plurality of grooves located on the outer surface of the cable body. Each groove defines a trough having a lower surface located between peaks on either side of the trough, and the groove array includes an average groove spacing. The optical cable includes an ink layer applied to the cable body at the location of the groove array. The groove array and the ink layer are formed to limit abrasion experienced by the ink layer.
A connecting device for a fiber optic cable includes a first part having first and second electrical connectors located on its housing, and a second part having a third electrical connector located on its housing. The second and third electrical connectors are adapted to be mechanically and electrically connect with each other or disconnected from each other. The first part has electrical components disposed within its housing and electrically connected to the first and second electrical connectors. The second part receives end portions of optical fibers of the fiber optic cable; it has optical transceivers within its housing but no other electrical circuitry. Also disclosed is a cable device employing an optical fiber cable and two connecting devices at its two ends, at least one of which having a structure described above. Various form factors can be adopted for the first part, including a plug, wall plate, standalone box, etc.
The present invention discloses a LED backlight module, which comprises a backplane; a side-type backlight source, which comprises a backlight source substrate and multiple light emitting diodes provided on the backlight light source substrate; a reflector, which is provided on the backplane; multiple light guides provided on the reflector in parallel, each light guide being provided with at least one light-incident surface and one light-emitting surface, the light-incident surface of the light guide being opposite to the LED; diffusers provided on the multiple light guides, which are opposite to the light-emitting surface of the light guide; and an optical film set, which is located above the diffuser. The embodiment of the present invention further discloses the corresponding liquid crystal display. According to the embodiment of the present invention, it can save the amount of LEDs, which is beneficial for the narrow frame of the liquid crystal display panel.
The planar polarization transformer for a normally incident optical wave or beam having a given vacuum wavelength λ comprises an optical planar grating between a cover medium of refractive index nc and an optical substrate of refractive index ns, this planar grating defining a binary index modulation or corrugation of substantially rectangular profile with periodic ridges. This polarization transformer is characterized in that the ridge refractive index nr is larger than the substrate refractive index ns, the grating period Λ is larger than 0.4·λ/nc, the substrate refractive index ns is smaller than 2.7·nc, and the index modulation or corrugation is designed such that, according to the grating mode dispersion equation, the effective index of the mode TE0 is larger than the substrate index ns and the effective index of the mode TM0 is larger than the cover refractive index and smaller than the substrate index.
The invention provides a colored composition including a dye multimer having an alkali-soluble group as a dye, the dye multimer having a weight-average molecular weight (Mw) of from 5,000 to 20,000 and a dispersity (weight-average molecular weight (Mw)/number-average molecular weight (Mn)) of from 1.00 to 2.50.
Methods and systems involving a potting process for selectively coating a target surface of a component. An example method may include: (1) dispensing a masking agent into a cavity, wherein the cavity is within a holder; (2) immersing a portion of a component that has a plurality of surfaces into the masking agent, such that at least one portion of a target surface from the plurality of surfaces is not immersed; (3) curing the masking agent such that the masking agent hardens on the portion of the plurality of surfaces of the component immersed in the masking agent; (4) coating the target surface with a coating agent; and (5) separating the masking agent from the portion of the plurality of surfaces of the component immersed in the masking agent.
Described herein are various embodiments of methods and corresponding hardware and software configured to permit the vicinity around and/or near a well to be imaged, where the well is being subjected to, or has been subjected to, fracking operations. The methods and corresponding hardware and software permit the generation of images of near-well fractures or faults resulting from the fracking.
An information processing apparatus including a positioning unit that determines a position of the information processing apparatus based on an external signal; a sensor unit that detects a change in position of the information processing apparatus; and a processing unit that measures, according to a change in position detected at the sensor unit, an amount of displacement of the information processing apparatus from a first time when the positioning unit starts to determine the position of the information processing apparatus to a second time when the positioning unit completes determining the position of the information processing apparatus; and identifies a position of the information processing apparatus at the first time by compensating the position of the information processing apparatus determined by the positioning unit at the second time with the amount of displacement of the information processing apparatus.
In a method and system for inspecting the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner includes a sensing system having one of a radar sensing device or an ultrasonic detection device. The sensing system detects 3D information about a subsurface of the structure, and the 3D scanner generates 3D data points based on the information detected by one or more of the radar sensing device and the ultrasonic detection device. A 3D model is constructed from the 3D data and is then analyzed to determine the condition of the subsurface of the structure.
First and second radar modules include channel controllers which set different frequency bands for first and second carrier waves, respectively, and first radar transmitter and receiver which transmit radio-frequency first and second radar transmission signals generated using prescribed first and second transmission code sequences and the first and second carrier waves, which receive first and second radar reflection signals produced as a result of reflection of the first and second radar transmission signals by a target, and which convert them into baseband first and second reception signals. A signal processor performs prescribed combining processing on outputs of the first and second radar modules. The first and second radar transmission signals partially overlap with each other in main beam directivity.
A method and magnetic resonance tomography system to generate magnetic resonance image data of an examination subject, raw imaging data are acquired from multiple slices of a predetermined volume region of the examination subject using local coils during a table feed in the magnetic resonance scanner. Image data of the slices are reconstructed on the basis of the raw imaging data. A normalization of the image data is subsequently implemented on the basis of measured coil sensitivity data of the local coils that are used.
A system and method for combining k-space data acquired on multiple different receiver channels in a multichannel receiver is provided. One or more convolution kernels are used to combine the k-space data. Each convolution kernel is designed as the combination of one or more channel combination kernels and an alias-suppressing kernel. The channel combination kernels are designed to have a smaller sample spacing than the acquired data, and the alias-suppressing kernel is designed to suppress aliasing artifacts in stopbands defined by the sample spacing of the channel combination kernels.
In one embodiment, a system includes a gradient coil driver configured to supply electrical signals to a gradient coil of a magnetic resonance imaging system. The gradient coil driver includes an electronic circuit. The electronic circuit includes a first H-bridge circuit electrically coupled to a power source. The first H-bridge includes a plurality of metal-oxide-semiconductor field-effect transistor (MOSFET) switches; and a plurality of diodes electrically coupled in parallel with each MOSFET switch. Each diode of the plurality of diodes is configured to conduct current to cause zero voltage potential across a source and a drain of one of the plurality of MOSFET switches. The first H-bridge also includes a load configured to regulate currents flowing through each of the plurality of diodes and each MOSFET switch of the plurality of MOSFET switches.