US09807919B2

An electronic device may have a display and other electrical components that are sensitive to electrostatic charge. A button may pass through an opening in a layer of the display. A metal trim may surround the button. The housing may have an opening with a clear lens surrounded by a metal trim. To prevent damage from electrostatic discharge, an electrostatic discharge path may be formed in the device that includes a metal trim surrounding a component such as a button member or camera lens, metal traces on the inner surface of a display layer or a housing, a grounded metal housing structure, and a spring or other conductive structure that couples the metal traces to the grounded metal housing structure. Displays may be provided with electrostatic discharge paths that route electrostatic charge to grounded metal housing structures.
US09807913B2

A cooling structure of a heating element includes: the heating element having at least one cooling surface from which a plurality of pin fins project; a heat receiving plate which has a shape complying with the cooling surface and in which holes are formed at positions facing each pin fin, each pin fin being movably inserted into the holes; a cooler which has a pair of clamping members that sandwich therebetween the heating element and the heat receiving plate while pressing the heating element and the heat receiving plate, and which cools the heat receiving plate; and a space securing part which is provided on the heat receiving plate and suppresses a distance between the pair of clamping members so as not to apply a pressing force by the clamping members to the heating element.
US09807909B1

A socket for an electric component includes a socket body in which a contact pin is provided in a housing part and a cover member provided so as to be rotatable with respect to the socket body. The cover member has a cover member body and a heat slug in contact with an electric component. The heat slug is configured so as to move downward and press the electric component by being pressed from above by a cooling head in a state in which the cover member is closed. In a state in which the electric component is housed in the housing part, a restricting mechanism allows the downward movement of the heat slug, whereas in a state in which the electric component is not housed in the housing part, the restricting mechanism prevents the downward movement of the heat slug.
US09807907B2

An air conditioner is provided. The air conditioner may include an electronic device, which may include a control component to drive a refrigerant cycle, and a cooling tube through which a refrigerant to cool the electronic device may flow. The cooling tube may be coupled to one side of the electronic device. The electronic device may include an electronic case having at least one through hole, an electronic board to which the control component may be coupled, the electronic board being disposed in the electronic case, at least one heat transfer plate disposed to contact the control component, the at least one heat transfer plate being coupled to the electronic case, and at least one heat sink, to which the cooling tube may be coupled, the at least one heat sink contacting the at least one heat transfer plate through the at least one through hole.
US09807899B2

According to one embodiment, a storage device includes an enclosure, and a circuit board assembly in the enclosure. The circuit board assembly includes a first circuit board on which a heat-producing component is mounted, a second circuit board, a third circuit board, a first connector connecting the first and second circuit boards, a second connector connecting the second and third circuit boards, a first spacer sandwiched between the first and second circuit boards, and a second spacer sandwiched between the second and third circuit boards. The first spacer includes a spacer frame, a partition member opposed to the heat-producing component with a gap between, and a thermal transfer member attached to the partition member and in contact with the first circuit board.
US09807898B2

A method of manufacturing a display device includes forming on a first substrate a display element and a metal layer surrounding the display element, the metal layer including a first portion having a first width and a second portion having a second width less than the first width, forming on a second substrate a sealing member surrounding the display element, the sealing member including a first sealing portion having a first forming width and a second sealing portion having a second forming width greater than the first forming width, arranging the first substrate and the second substrate such that the sealing member on the second substrate faces the first substrate, the first sealing portion overlaps the first portion of the metal layer, and the second sealing portion overlaps the second portion of the metal layer, and sealing the first and second substrates by melting and curing the sealing member.
US09807892B2

A drive unit is provided, particularly a drive unit for operating flow-control valves, comprising a housing, an electrical input, an electromechanical converter assembly, a mechanical output, and an electronic controller. The controller comprises an input unit having at least one pushbutton, which penetrates the housing and can be depressed against the action of a restoring device, and comprises a contactless switch that is actuated by the at least one pushbutton. A mechanical stop independent of the switch itself is associated with the position of the pushbutton that actuates the switch.
US09807890B2

The present disclosure is related to electronic modules for electronic components and methods for manufacturing the same. In one embodiment, an electronic module is formed using a first substrate having a first component area and a second substrate having a second component area. One or more electronic components may be attached to both the first component area and the second component area. The second substrate is mounted over the first substrate such that the second component area faces the first component area. An overmold covers the first component area and the second component area so as to cover the electronic components on both the first component area and the second component area. In this manner, the number of electronic components within the electronic module that can be mounted on an area of a printed circuit board (PCB) is increased.
US09807889B2

An method of mounting electronic component includes: providing a connecting layer between a wiring and an electronic component, the connecting layer including a conductive layer formed of a solder powder-containing resin composition containing thermosetting resin, solder powder, and a reducing agent and one or two layers of a thermoplastic resin layer formed of thermoplastic resin; and electrically connecting the electronic component to the wiring through the connecting layer.
US09807877B1

A flexible printed circuit board with multiple layers includes an inner wiring substrate and at least one outer wiring plate. Each outer wiring plate is connected to one surface of the inner wiring substrate, and defines at least one through hole which passes through the outer wiring plate to expose the inner wiring substrate. Each outer wiring plate further includes an adhesive plate connected to the inner wiring substrate. The adhesive plate includes a stepped portion extending towards a center of the through hole.
US09807876B2

A flexible electronic reading device, the device comprising a display part and a handle, wherein said display part comprises: a display backplane on a flexible substrate; and a display mounted over said display backplane; wherein said handle is located at one edge of said display backplane and contains display interface electronics for said display; and wherein said display part of said electronic reading device comprises a unitary, continuous structure lacking a separate housing.
US09807875B2

A novel electronic device is provided. Alternatively, an electronic device of a novel embodiment is provided. Alternatively, a sturdy electronic device is provided. The electronic device includes a housing and a display portion having flexibility. The housing includes a first board, a second board, and a sealing portion. The first board has a light-transmitting property. The first board and the second board face each other. The sealing portion is between the first board and the second board. The first board has a first curved surface which forms the inside of the housing. The display portion includes a region in contact with the first curved surface.
US09807862B2

A plasma processing apparatus includes an ICP antenna, provided outside a processing chamber opposite to a mounting table, for supplying a high frequency power supply into the processing chamber, and a window member made of a conductor, disposed between the mounting table and the ICP antenna, forming a part of a wall of the processing chamber. The window member includes transmission units for transmitting the high frequency power in a thickness direction of the window member. Each of transmission units has a slit, which extends through the window member in the thickness direction and is configured such that its width is changeable.
US09807858B2

A power management system for a lighting circuit may include a grid shifting controller that includes a processor and a connection to an external power source. The power management system may also include a communication interface associated with the grid shifting controller. The grid shifting controller may be configured to provide control information to a processor of at least one grid shifting electrical fixture over the communication interface, the control information being configured to direct the at least one grid shifting electrical fixture on the use of power from the external power source and an energy storage device associated with the at least one grid shifting electrical fixture.
US09807857B2

An illumination control system provides wireless data transmission with a lamp through a mobile communication device. The lamp has a built-in wireless communication module and a microcontroller. The microcontroller stores a location of the lamp with latitude-longitude values and height values. Accordingly, a user may use the mobile communication device to read the latitude-longitude values and height values of the lamps to achieve an indoor positioning function by calculating a positioning information of the user through indoor positioning algorithms, and thereby enable illumination control through the mobile communication device according to the positioning information.
US09807855B2

In some embodiments of the disclosed subject matter, systems and methods for controlling aquatic lighting using power line communication. In some embodiments, the systems include: a first power line modem coupled to an AC power line and a LAN; a user interface configured to: receive user input specifying a lighting, selection; and transmit lighting data representing the lighting selection to the first power line modem via the LAN; and a lighting controller that receives power via the AC power line, comprising: a light driver circuit coupled to a light source; a second power line modem coupled to the AC power line, the second power line modem receives the lighting data over the AC power line; and a processor configured to: receive lighting data from the second power line modem; and cause the light driver circuit to drive the light source to present the lighting selection.
US09807853B2

A lighting device that is capable of discriminating a type of an external power source device connected from among types of connectable devices without increasing the number of terminals of a connector. A connector is electrically connectable to an external power source device and includes a first terminal for supplying electric power from the external power source device to a main capacitor and a second terminal for discriminating a type of the external power source device. An obtaining unit obtains the information for discriminating the type of the external power source device by comparing a voltage value of a signal input to the second terminal from the external power source device with a predetermined voltage threshold when an attribute of the second terminal is set to an input. A discrimination unit discriminates the type of the external power source device by contrasting the information obtained with information stored.
US09807850B1

Disclosed herein is an apparatus for controlling an operation of a road stud. The apparatus includes a light emitting unit of the road stud, a power supply unit configured to supply power to the light emitting unit, an illumination sensor unit configured to apply a voltage corresponding to a peripheral illumination of the road stud, a reference-voltage generating unit configured to apply a reference voltage corresponding to a reference illumination of the road stud, a light emitting control unit configured to interrupt supply of power to the light emitting unit when the peripheral illumination of the road stud is equal to or more than the reference illumination, and configured to allow the supply of the power to the light emitting unit only when the peripheral illumination of the road stud is less than the reference illumination, and a road stud type-identification unit.
US09807846B1

Single channel digital addressable lighting interface (DALI) systems can include a dedicated external power supply that operates in a constant voltage/constant current mode to meet requirements of the DALI bus. A lighting controller is powered from the DALI bus. In one embodiment of the inventive subject matter, a lighting system is provided that includes two or more control (e.g., DALI) buses and a multichannel power supply that can be used for powering a controller of the system with constant voltage and to power separate control buses with separate and constant current. In order to protect the controller and buses from overloads caused by miswiring or other erroneous conditions, a protection circuit assembly is provided.
US09807844B2

An LED module includes, on a circuit board, first to fourth electrodes, a first circuit including a first LED group, and a second circuit including second and third LED groups, a switch element and a detection element. The second circuit includes a first path leading from the second LED group to one end of the detection element, and a second path leading from the third LED group via the switch element to one end of the detection element. The first and second electrodes are connected to the first circuit, the third electrode is connected to the second and third LED groups, and the fourth electrode is connected to the other end of the detection element. The threshold voltage for light emission of the second LED group is larger than that of the third LED group. The switch element controls a current flowing through the second path in accordance with a current flowing via the detection element.
US09807842B2

For controlling operation of a light source, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.
US09807840B2

System and method for providing at least an output current to one or more light emitting diodes. The system includes a control component configured to receive at least a demagnetization signal, a sensed signal and a reference signal and to generate a control signal based on at least information associated with the demagnetization signal, the sensed signal and the reference signal, and a logic and driving component configured to receive at least the control signal and output a drive signal to a switch based on at least information associated with the control signal. The switch is connected to a first diode terminal of a diode and a first inductor terminal of an inductor. The diode further includes a second diode terminal, and the inductor further includes a second inductor terminal.
US09807832B1

A light emitting diode driving system includes a control unit, an output side switch unit, the fast voltage-adjusting circuit and a light signal voltage generation circuit. When the control unit does not turn on the output side switch unit, the control unit controls the fast voltage-adjusting circuit to process an output voltage, and the light signal voltage generation circuit combines the fast voltage-adjusting circuit to clamp the output voltage to meet a predetermined value. When the output voltage is processed to meet the predetermined value, the control unit turns on the output side switch unit so the output voltage recovers and a light driving signal is generated. According to the light driving signal, a plurality of two-pin point-controlled light emitting diode lamps is operated in a lighting mode.
US09807831B2

A lighting unit (100) includes light emitting diode (LED) modules (120, 300) and a lighting driver (110, 200) connected to the LED modules. Each LED module includes LEDs (323) and an identification current source (324) supplying an identification current to an identification current output node (180, 380). All of the identification current output nodes are connected together to supply a total identification current having a magnitude which changes in response to the number of LED modules that are connected to the lighting driver. The lighting driver includes: a controllable current source (220 & 250) to supply an LED driving current to the LEDs of the LED modules, and a controller (230) that responds to the total identification current to control the controllable current source to supply the LED driving current at a magnitude which changes in response to the number of LED modules that are connected to the lighting driver.
US09807826B2

An LED tube lamp includes a first rectifying circuit, a second rectifying circuit, an LED lighting module, a mode determination circuit and a mode switching circuit. The first rectifying circuit is coupled to a first pin and second pin and is configured to rectify an external driving signal transmitted from the first pin and/or the second pin. The second rectifying circuit is coupled to a third pin and a fourth pin and is configured to rectify the external driving signal with the first rectifying circuit. The filter circuit is coupled to the first rectifying circuit and configured to filter the rectified signal. The LED lighting module has a driving circuit and an LED module, and is coupled to the filter circuit and is connected to receive the filtered signal. The mode determination circuit is configured to generate a first determined result signal based on the external driving signal. The mode switching circuit is coupled to the filter circuit and the driving circuit, and is configured to determine whether to perform a first driving mode or a second driving mode based on the first determined result signal. The driving circuit receives a filtered signal from the filtering circuit and drives the LED module light when performing the first driving mode, and the filtered signal bypasses at least a component of the driving circuit to drive the LED module to light when performing the second driving model.
US09807824B2

Methods and apparatus for lighting control. In some embodiments methods and apparatus are provided that sense a low lighting condition at a location and direct light toward that location after detection of the low lighting condition. In some embodiments apparatus are provided that include a plurality of networked LEDs. Some of the LEDs may be illuminated in response to sensed light conditions at certain locations.
US09807823B2

Apparatuses and methods are disclosed for applying radio frequency (RF) energy to an object in an energy application zone. At least one processor may be configured to cause RF energy to be applied at a plurality of electromagnetic field patterns to the object in the energy application zone. The processor may be further configured to determine an amount of power dissipated in the energy application zone, for each of the plurality of field patterns. The processor may also be configured to determine a spatial distribution of energy absorption characteristics across at least a portion of the energy application zone based on the amounts of power dissipated when the plurality of field patterns are applied to the energy application zone.
US09807819B1

A wireless network of a first type receives a request for network entry from a mobile station. A service continuity query is sent to a service node. A service continuity response is received from the service node. The service continuity response includes a network access identifier. The network access identifier is determined to be associated with an existing session on a wireless network of a second type. The existing session is using a mobile internet protocol address. On the wireless network of the first type, a session is assigned the mobile internet protocol address.
US09807812B2

A communication terminal, installed with a plurality of types of communication application, receives first terminal identification information for identifying the first communication terminal from a second mobile terminal, after the second mobile terminal has received the first terminal identification information from a first mobile terminal, the first mobile terminal being a mobile terminal that has obtained the first terminal identification information from the first communication terminal through a first communication session. The communication terminal activates one of the plurality of types of communication application based on the first terminal identification information, and starts communicating with the first communication terminal through a second communication session using the activated communication application.
US09807809B2

One kind of communication is referred to as device-to-device D2D communication. Misuse is an issue for this type of communication. For example a public safety network may permit D2D communication to operate in an area following a natural or other incident where the controlling network entity loses coverage. However this permission to allow D2D communication without the controlling entity can lead to users of D2D apparatus such as public safety communications devices configured for use in a first region being able to perform D2D communications in a second region in licensed bands that are illegal or not permitted. Furthermore, each device should be configured to setup an ad hoc network using D2D only in those areas where the licensed bands can be used legally by the device. Therefore, each device determines its position and blocks D2D operation when outside of a geographical area to which it was configured.
US09807808B2

A communication system includes a first device configured to transmit first data, a second device, a third device, a fourth device, and a storage device configured to store correspondence information, and when the second device is in the first state, the second device transmits the first data to the address of the third device, and when the second device is in the second state, the second device transmits the first data to the fourth device, the second device notifies the fourth device of the address of the second device, the fourth device receives the first data and notifies the storage device of the address of the second device, the storage device notifies the fourth device of the address of the third device associated with the address of the second device based on the correspondence information, and the fourth device transmits the first data to the address of the third device.
US09807807B2

A communication apparatus includes an acquisition unit, a determination unit, and a control unit. The acquisition unit acquires capability information on other communication apparatuses in a network. The determination unit determines, based on the capability information acquired by the acquisition unit, whether there is a communication apparatus having a specific function, related to data communication, to be performed after processing to set communication parameters is performed. The control unit perform controls, in response to the determination unit determining that there is a communication apparatus having the specific function, to continue the processing to set the communication parameters, and performs control, in response to the determination unit determining that there is no communication apparatus having the specific function, to terminate the processing to set the communication parameters.
US09807797B2

A channel access method and apparatus are disclosed. The channel access method by an access point (AP) having a sector antenna in a wireless local access network (WLAN), may include transmitting a sector beacon with respect to any one sector among a plurality of sectors, transmitting and receiving data with at least one station in any one sector during a pre-scheduled sector interval, sequentially performing transmission of the sector beacon and transmission and reception of the data with respect to remaining sectors of the plurality of sectors excluding the any one sector, transmitting an omni beacon with respect to all of the plurality of sectors, and transmitting and receiving data with respect to at least one station of the plurality of sectors during a pre-scheduled Basic Service Set (BSS) interval.
US09807784B2

Video sub-reservation protocol in a wireless ecosystem. Appropriate access is provided to a number of wireless communication devices to ensure very high performance and a high perceptual user experience with respect to media related content communications. Access to the communication medium (e.g., air within a wireless location system) is provided to various wireless communication devices in a manner as to minimize collisions and contention. In one instance, different respective access assignment periods are sub-divided to give respective communication medium access to various devices within the system. Such sub-reservation may be adaptive in response to any of a number of considerations (e.g., traffic, device processing history, etc.). Also, such sub-reservation may provide respective time specificity at or during which certain devices may conduct communications, but may also specify any other operational parameters (e.g., which frequency spectra to use, duration of such communications, modulation coding set (MCS) to use, etc.).
US09807780B2

A request possibility determination unit 13 for a communications terminal 1-1 determines whether or not communications time required for obtaining data from a communications terminal 1-2 can be secured, between the communications terminal 1-2 and the communications terminal 1-1. A data acquisition unit 12: determines data that has not been stored in a data storage unit 14, among data on a list received as a result of a communications message from another communications terminal 1-2; and requests the determined data from the communications terminal 1-2, by using a communications message on the condition that the request possibility determination unit 13 has determined that communications time can be secured.
US09807779B2

Various aspects described herein relate to managing ultra low latency (ULL) communications over a plurality of component carriers (CC). A configuration for aggregating a set of CCs can be received, wherein the set of CCs includes at least a primary cell and a secondary cell. Based on the received configuration, at least the primary cell can be communicated with for legacy communications, wherein the legacy communications are based on a first transmission time interval (TTI) having a first duration. Based on the received configuration, the primary cell and the secondary cell can be communicated with for ULL communications, wherein the ULL communications are based on a second TTI having a second duration that is less than the first duration.
US09807777B2

An antenna switching method of an electronic device is provided. The antenna switching method includes measuring a transmit power variation of a first antenna, monitoring characteristics of received signals of both the first antenna and a second antenna, determining a comparison result by comparing the characteristics of the received signals of both the first antenna and the second antenna when the transmit power variation is greater than or equal to a threshold value, and switching a transmitting antenna based on at least the comparison result.
US09807776B2

Embodiments of the disclosure provide a method and apparatus for cross-subframe interference coordination in a dynamic TDD system. The method comprises steps of: obtaining UL-DL configurations employed by a plurality of cells in the dynamic TDD system; and determining, based on the UL-DL configurations, a beamforming vector of at least one interfering cell which has cross-subframe interference on at least one interfered cell, so as to reduce the cross-subframe interference.
US09807774B2

The present disclosure relates to methods and devices for transmission of discovery signal signals and detection of discovery signal signals for device-to-device communication. According to some aspects, the disclosure relates to a method executed in a first wireless terminal for transmitting a control signal for enabling device-to-device, D2D, discovery, wherein the control signal carries an identity. According to one aspect, the method comprises hashing the control signal, taking a time stamp used for the control signal transmission as one input parameter, encoding the hashed control signal and transmitting the encoded signal.
US09807771B2

A method of operating a base station such that the method comprises determining whether there are any mobile devices that are not associated with the base station that require protection from interference caused by downlink transmissions of the base station and setting a maximum permitted transmission power for the base station based on the result of the step of determining. A base stations operating according to this method is also disclosed.
US09807761B2

To facilitate sending a reference signal in a wireless communication environment, a transmitter sends a reference signal in a first time-frequency resource to a user equipment (UE); the transmitter sends data information in a first portion of a second time-frequency resource different from the first time-frequency resource to the UE; and the transmitter excludes data information from being sent in a second portion of the second time-frequency resource. The second portion of the second time-frequency resource is designated for use by another transmitter for sending another reference signal to the UE.
US09807759B2

A method of transmitting a data frame by a transmitter in a WLAN system is provided. The method includes generating a data block including at least one data units respectively transmitted through at least one or more spatial streams to at least one receiver, transmitting first control information to the at least one receiver, transmitting second control information to each receiver, and transmitting the data block to the at least one receiver. The first control information includes a length indicator for the data block, a MIMO indicator indicating whether the data block is for SU-MIMO or MU-MIMO, and a spatial stream indication field including information about the number of the spatial streams. The second control information includes a FEC coding field indicating an encoding scheme applied to the data unit and an MCS field indicating an MCS applied to the data unit.
US09807747B2

A method of arranging downlink (DL) control information (DCI) for a network of a wireless communication system comprises configuring first DCI for a communication device of the wireless communication system; and transmitting the first DCI in a control region of a first physical DL shared channel (PDSCH) of a first subframe of a first component carrier to the communication device.
US09807744B2

The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and a device therefor, the method comprising: setting a first cell having a first TDD UL-DL configuration and a second cell having a second TDD UL-DL configuration; receiving data through a DL subframe of the first cell; and transmitting reception response information on the data through a UL subframe of the second cell, wherein the relationship between the DL subframe and the UL subframe is determined by a parameter value set in a specific TDD UL-DL configuration, which is the TDD UL-DL configuration having the least number of DL subframes from TDD UL-DL configuration(s), in which subframes set as a DL in the first or second cell are all set as DLs.
US09807741B2

The disclosure discloses a method for transmitting uplink control information. The method includes: receiving, by a user equipment, a carrier activation command or a carrier deactivation command in a downlink subframe n; updating a first downlink activated carrier set according to the received carrier activation command or the carrier deactivation command into a second downlink activated carrier set; taking the second downlink activated carrier set as a current downlink activated carrier set corresponding to a first uplink subframe which belongs to a subframe set of an uplink subframe n+k and uplink subframe(s) after the uplink subframe n+k; sorting X piece(s) of Uplink Control Information (UCI) corresponding to X downlink carrier(s) according to a sorting rule, and transmitting the sorted X pieces of UCI to a base station in the first uplink subframe.
US09807732B1

Techniques for using user input to tune calls include receiving communication data from a first client device, at a server, directed to a second client device during a call between the first client device and the second client device; forwarding the communication data to the second device; receiving from one of the first client device or the second client device, first user input data; using the first user input data as an input to a call-tuning model; and modifying a call parameter of the call according to output from the call-tuning model in response to the first user input. Other embodiments are described and claimed.
US09807727B2

A rack location determination system includes a rack that defines a plurality of device housings. A rack wireless communication device is positioned on the rack and a computing device that includes a computing device wireless communication subsystem and that is positioned in a first device housing of the plurality of device housings in the rack. The computing device is configured to receive a wireless signal through the computing device wireless communication subsystem from the rack wireless communication device and determine a wireless signal strength of the received wireless signal. Based on the wireless signal strength of the wireless signal, the computing device is configured to determine a rack location of the computing device by using the wireless signal strength with a wireless signal strength/rack location mapping. The wireless signal strength/rack location mapping is associated with a location of the first rack wireless communication device.
US09807724B2

A method is provided for determining the position of a mobile technology platform within a structure, wherein the mobile technology platform is equipped with a gyroscope, a magnetometer and at least one accelerometer. The method includes deploying a set of RF (radio frequency) beacons within the structure, wherein each RF beacon emits an RF signal; recording, at each of a set of sampling locations within the structure, the RF signature created by the RF signals received at the location; forming an RF fingerprint of the structure from the recorded RF signatures; and using the RF fingerprint, in conjunction with readings from the gyroscope, magnetometer and at least one accelerometer to determine the location of the device within the structure.
US09807722B2

Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
US09807712B2

A method for dynamic sizing of a blocker margin by a receiver automatic gain control (AGC) is described. The method includes measuring a wanted signal level and a blocker signal level. The method also includes adjusting a linear target for the wanted signal level at the output of an analog-to-digital converter (ADC) of the receiver based on the blocker signal level. The linear target is adjusted to optimize a wanted signal signal-to-noise ratio (SNR) and the blocker margin. The method further includes adjusting a receiver front-end gain based on the adjusted linear target.
US09807711B2

A method and system for setting a power of a secondary device-to-device synchronization signal, SD2DSS, by a first wireless device to enable a second wireless device to synchronize timing of the second wireless device to a timing of the first wireless device are disclosed. According to one aspect, a method includes determining power of a first signal transmitted by the first wireless device, and setting the power of the SD2DSS based on the power of the first signal.
US09807710B2

A method by which a terminal transmits a discovery signal for device-to-device communication in a wireless communication system is disclosed in the present application. Particularly, the method comprises the steps of: receiving one or more downlink signals; determining transmission power for transmitting the discovery signal on the basis of reference reception power of the one or more downlink signals; and transmitting the discovery signal on the basis of the determined transmission power, wherein the transmission power decreases as the reference reception power increases.
US09807705B2

Provided are a method and device for controlling transmitting power. According to the method, when it is detected that a target object approaches a mobile terminal, a position, which the target object approaches, on the mobile terminal is determined, and an optimal sensing area for a Specific Absorption Rate (SAR) reducing antenna of the mobile terminal to sense a movement of the target object is selected according to the position; movement information of the target object is acquired by sensing the movement of the target object in the optimal sensing area by the SAR reducing antenna, and the transmitting power of the mobile terminal is controlled according to the movement information. The technical solution can improve the sensing distance and range of the SAR reducing antenna, namely, improve the sensitivity of the SAR reducing antenna.
US09807701B2

A multimode wireless communication terminal that communicates using a first radio access technology (RAT) and a second RAT determines whether the first and second RATs are in an active state, and modifies a maximum transmit power limit of the first RAT based on a voice codec rate of a voice transmission on the second RAT when the first RAT and the second RAT are in the active state concurrently, wherein the second RAT is conducting the voice transmission in the active state. In an alternative embodiment, the limit is modified based on a transmit power status of the second RAT or on a transmission type of the first RAT.
US09807699B2

Methods and apparatuses are described herein for adapting clear channel assessment (CCA) thresholds with or without Transmit Power Control (TPC) are disclosed. An IEEE 802.11 station (STA) may dynamically calculate a STA specific transmit power control (TPC) value and a STA specific clear channel assessment (CCA) value based on a target TPC parameter and a target CCA parameter. The target TPC parameter and the target CCA parameter may be received from an IEEE 802.11 cluster head configured to control TPC and CCA for a plurality of STAs associated with the BSS. The target TPC parameter and the target CCA parameter also may be related. The STA may then determine whether a carrier sense multiple access (CSMA) wireless medium of a wireless local area network (WLAN) basic service set (BSS) is occupied or idle based on the STA specific CCA value.
US09807698B2

The present invention provides a data frame sending and receiving method and apparatus. The data frame sending method includes: receiving, by a first access point, first interference power parameters fed back by associated stations of the first access point, and receiving second interference power parameters sent by a second access point; if determining that a channel on which the first access point works is currently being occupied by the second access point, determining to-be-scheduled stations and transmission powers of the first access point for the to-be-scheduled stations, sending scheduling indication signaling at the determined transmission powers, and receiving scheduling indication response signaling sent by a schedulable station; and sending a data frame to the schedulable station at a transmission power corresponding to the schedulable station among the determined transmission powers.
US09807695B2

The present disclosure relates to embodiments of a method and a network element for real-time adjustment of the energy consumption of a data communications network. The network comprises a number of network elements connected by transport links. User activity status is determined based on status information from user activity monitor. An activity status is determined by aggregating available activity status from activity status reports for each downlink connection and the most recent determined user activity status. The determined activity status is sent in activity status reports upstream, and the performance of associated transport links and internal network element components is adjusted and regulated in accordance with the determined activity status.
US09807689B2

A communication device includes a receiving circuit and a start-up time adjustment circuit configured to transmit, to the receiving circuit, a start signal that instructs a change from a sleep state to an active state, wherein the start-up time adjustment circuit is configured to transmit, to the receiving circuit, a first start signal that instructs a change from the sleep state to the active state at a first time earlier than a second time when a first signal reaches the communication device, measure a first time difference between the second time and the first time, determine, based on the first time difference, a third time when the receiving circuit is changed from the active state to the sleep state, and transmit a second start signal that instructs a change from the sleep state to the active state to the receiving circuit at the third time.
US09807684B2

A machine-to-machine device is configured to execute an application and comprises a cellular network interface for wireless communication of data for the application with a cellular network. It has subscription information allowing it to register with more than one cellular network. The device may be registered with one cellular network, selected as having a received signal quality measurement of at least a predetermined level that is based upon a quality of service level defined by the application. It is also provided that the device may identify that a quality measurement for a packet-switched communication link fails to meet a predetermined level. In response, the machine-to-machine device may be deregistered from one cellular network and registered with another cellular network.
US09807679B2

A mobile terminal device may include a radio processing circuit configured to transmit communication data indicating a serving cell, the communication data intended for a server and receive system information of one or more proximate cells of the serving cell indicated by the communication data. The mobile terminal device may also include a baseband processing circuit configured to determine if system information of a target cell is included in the received system information of the one or more proximate cells, and, if the system information of the target cell is included in the received system information of the one or more proximate cells, apply the received system information of the target cell to control the radio processing circuit to transmit or receive data.
US09807677B2

The present invention relates to a wireless communication system, and more particularly, to a service discovery method and device in a wireless LAN system. A service discovery method in a wireless LAN system according to one embodiment of the present invention can comprise: transmitting, by a request device, a service discovery request frame to a response device; and receiving, by the request device, a service discovery response frame, which comprises service information of the response device and service information of each of one or more other devices, from the response device. The one or more other devices can comprise a device which does not belong to the same group as the response device.
US09807676B2

The frequency notifying device includes: a processor configured to store usable frequencies containing a restricted frequency being restricted in use thereof by radio equipment in a predetermined communication area and a frequency not being restricted in use thereof by the radio equipment in the communication area; and notify the radio equipment, in the communication area, of a signal for requesting the radio equipment to check whether the restricted frequency is usable or not before performing a communication using the restricted frequency when notifying the radio equipment of the usable frequency.
US09807667B2

A method for gateway relocation, an MME and a DeNB are disclosed. The method includes: in a process of an MRN performing handover of the DeNB, the MME of the MRN judging whether it is required to execute a relocation of a gateway serving the MRN according to the current location of the MRN.
US09807666B2

Embodiments of the present invention disclose a method for selecting a target cell and a terminal, comprising: acquiring, by a terminal, signal strengths of a serving cell and signal strengths of neighboring cells according to a predetermined time period; determining a candidate target cell set, where the candidate target cell set includes neighboring cells whose first strength parameters are greater than a first strength parameter of the serving cell at a specific moment; detecting signal change trends, which are within a predetermined time length before the specific moment, of the neighboring cells in the candidate target cell set; determining that a neighboring cell in a set of neighboring cells whose signal change trends satisfy a first state in the candidate target cell set is a target cell, where the first state is a stable trend and/or an ascending trend; and reselecting the target cell as a serving cell.
US09807665B2

[Object] To make it possible to suppress deterioration in communication quality of radio communication in a small cell while power consumption of a base station of the small cell is reduced.[Solution] Provided is a communication control device including: an acquisition unit configured to acquire a result of measurement performed by a terminal device with regard to one or more small cells which are partly or entirely overlapped by a macrocell; and a selection unit configured to select a base station which is not to be set in an idle state from base stations of the one or more small cells based on the result of the measurement.
US09807654B2

There is provided a method, including requesting, by a network element of a macro cell network infrastructure, a local cell access point operating within the macro cell to either activate or deactivate a local cell control plane with respect to active user equipment of the local cell, wherein the local cell access point continues to provide a user plane to the active user equipment; and receiving a response to the request.
US09807649B2

The present invention provides a method and system for indicating packet switched (PS) services capability information in a GPRS EDGE Radio Access Network (GERAN) environment. When a GERAN provides PS only services on a GERAN terminal, the GERAN terminal indicates its capability to support PS only services to a GERAN entity. Accordingly, the GERAN entity can deliver PS services data to the GERAN terminal operating a PS only mode over resources suitable for PS data communication.
US09807645B1

A method for adjusting capacity in a multi-stage routing network includes monitoring a number of available connections between a router in a first stage of a multi-stage router network and one or more routers in a second stage of the multi-stage router network. Each of the stages of the multi-stage router network may include a plurality of routers. The method may also include detecting that the number of available connections falls below a threshold number. A notification can be sent to one or more routers in a third stage of the multi-stage router network that the router in the first stage is deprioritized. The one or more routers in the third stage can be operated so that communications to the first stage are routed to one or more other routers in the first stage.
US09807634B2

The present invention defines a method for a terminal capable of aggregating multiple carriers to perform measurement to the carriers efficiently in a mobile communication system. The present invention is directed to the 3GPP LTE (Long Term Evolution or 3GPP LTE-A (LTE-Advanced) system that is currently discussed in the 3GPP (3rd Generation Partnership Project) as an example of the communication system to which the present invention is applied.
US09807626B2

Embodiments of the present invention disclose a processing method of a wireless fidelity technology and a user equipment, where implementation of the method includes: detecting whether a radio link failure occurs at an air interface of a wireless fidelity network; resetting a bottom layer of the wireless fidelity network, and suspending a radio bearer to an access point of the wireless fidelity network, when it is detected that the radio link failure occurs at the air interface of the wireless fidelity network, during a process that a base station distributes mobile data for a user equipment by using the wireless fidelity technology; and restoring the radio bearer to the access point of the wireless fidelity network, when the resetting of the bottom layer of the wireless fidelity network is completed, and it is detected that the air interface of the wireless fidelity network is restored to be normal.
US09807623B2

Disclosed is method and apparatus for operation of a base station in wireless communications, including self-configuration of the base station for secure and authenticated communications with other base stations.
US09807621B1

In embodiments of distributed channel sampling across a mesh network, a commissioning device propagates a scanning request, which includes a number of scanning parameters, to nodes in a mesh network, causing the nodes to perform energy detection (ED) scans using the scanning parameters. The commissioning device receives energy measurements in scanning reports from the nodes and analyzes the measurements to determine an operating channel for the mesh network. The commissioning device updates the operating channel in network configuration information that is sent to a leader device in the mesh network, for propagation to the mesh network.
US09807615B2

A first hardware component identifier may be read for a first hardware component of a computing device. The reading of the first hardware component identifier for the first hardware component may be performed by a processor of the computing device reading a read-only memory of the first hardware component. A second hardware component identifier and an alert indicator over a network may be received. The second hardware component identifier and the alert indicator may correspond with the first hardware component. The first hardware component identifier may be compared with the second hardware component identifier. The computing device may be disabled when the first hardware component identifier matches the second hardware component identifier and the alert indicator indicates that the first hardware component has been reported stolen.
US09807613B2

An information handling system includes a wireless adapter that communicates with a network policy engine at a service provider to provide feedback on a network access policy of the service provider, an application processor that executes instructions of a context aware radio resource management system that determines one or more optimal wireless link options for communicating with a recipient user via a wireless link from among communication link options available from the service provider.
US09807606B2

A method and apparatus are provided for performing information-theoretically secure cryptography using joint randomness not shared by others. Two valid communicating entities independently generate samples of a shared source that is not available to an illegitimate entity. The shared source may be a satellite signal, and each legitimate entity may generate uniformly distributed samples from a binary phase-shift keying signal received on an independent channel. Alternatively, the shared source may be a channel between the two legitimate entities, such that each legitimate entity generates samples of unknown distribution based on the channel impulse response of the channel. One legitimate entity generates an encryption key, a quantization error, and a syndrome from its samples. The quantization error and the syndrome are reported to the other legitimate entity. The other legitimate entity generates a matching encryption key using its samples, the quantization error, and the syndrome.
US09807600B2

Methods and apparatuses that enroll a wireless device into an enterprise service with a management server addressed in a management profile are described. The enrollment may grant a control of configurations of the wireless device to the management server via the management profile. In response to receiving a notification from the management server, a trust of the notification may be verified against the management profile. If the trust is verified, a network session may be established with the management server. The network session may be secured via a certificate in the management profile. Management operations may be performed for management commands received over the secure network session to manage the configurations transparently to a user of the wireless device according to the control.
US09807586B2

In one aspect, an exemplary method involves a WCD: (i) determining a likelihood of roaming, wherein the likelihood of roaming indicates a likelihood that the WCD will be handed off from a preferred coverage area to a non-preferred coverage area; and (ii) using the likelihood of roaming as a basis for managing an active set of the WCD. In particular, the WCD may manage its active set by setting at least one active-set parameter affecting the number of active sectors in an active set of the WCD, and then maintaining its active set according to the setting of the at least one active-set parameter. According to an exemplary embodiment, a WCD will make an effort to increase the number of sectors in its active set when the likelihood of roaming is greater, and vice versa.
US09807574B2

A system is disclosed for providing multicast services to mobile devices, comprising a first network node providing a radio access network to a mobile device; a second network node coupled to the first network node and providing backhaul routing for the first network node; a controller node, coupled to both the first and the second network node and to a multicast packet gateway, wherein the controller node provides a virtualized interface of a single network node to the multicast packet gateway, thereby virtualizing the first and second network nodes to the multicast packet gateway such that the multicast packet gateway may be enabled to send a multicast data stream to the first and the second network nodes via the controller node.
US09807572B2

A management system includes: a mobile terminal; a plurality of base stations; and a management device. The mobile terminal includes a first processor that executes a first process including transmitting management information including identification information of the mobile terminal using short waves. The base stations include a second processor that executes a second process including first receiving the management information transmitted from the mobile terminal, to transmit the management information to the management device. The management device includes: a third processor that executes a third process including: second receiving the management information transmitted from one or more of the base stations; identifying identification information of the mobile terminal from the received management information; and transmitting the management information to a terminal of the management organization corresponding to identification information of the terminal of the management organization to which the mobile terminal belongs, based on the identified identification information.
US09807555B2

Teachings herein improve selection of the positioning method(s) used to obtain positioning information responsive to a positioning request, by approaching positioning QoS holistically. Approached holistically, a joint QoS metric as taught herein takes into account the joint effect of individual QoS parameters of a positioning method, or the joint effect of multiple methods in a sequence. Processing in one or more embodiments thus includes determining a joint QoS metric for each of a plurality of candidate positioning methods or sequences, and selecting a positioning method or sequence based on those joint QoS metrics. By selecting a positioning method or sequence in this way, holistically based on joint QoS metrics rather than a piecemeal approach based on a one-by-one check of individual QoS parameters, selection proceeds flexibly according to actual QoS requirements of position-based services and/or systematically according to the joint effect of multiple positioning methods.
US09807554B2

A method of sending the value of a status variable from a sending device to a receiving device as part of a standardized binary coded radio message. The message includes fields for predetermined information to be sent with the message as well as a buffer field. The method includes causing the sending device to assemble, calculate a checksum for, digitally store and periodically transmit a predetermined type of message in the form of a radio signal readable by a receiving device. The status variable is not related to the predetermined information. Before the checksum is calculated, the sending device inserts the value of the status variable in binary coded format into the message in a buffer field. According to a governing messaging standard, the buffer field is not intended to transmit information. The receiving device interprets the binary value as the value of the status variable.
US09807553B2

An apparatus has a processor and a memory, the memory storing instructions that when executed by the processor, cause the processor to schedule a communication between a contact center and a communication device associated with a user, prompt the user to configure a geographic location for the communication device, track geographic location for the communication device, and initiate the communication in response to determining that the geographic location of the communication device appliance is the configured geographic location.
US09807550B2

Among other things, one or more client devices, techniques, and/or systems are provided for presenting weather conditions. A grid size of a first geohash cell (e.g., space subdivided into a grid), corresponding to a location of a user, is determined based upon supplemental factors (e.g., population density, elevation, topography, etc.). A first weather station, located in the first geohash cell, and a second weather station, located in a second geohash cell neighboring the first geohash cell, are identified. A first distance from the first weather station to the location is determined, and a second distance from the second weather station to the location is determined. Responsive to the first distance being less than the second distance, information from the first weather station is presented to the user. Responsive to the second distance being less than the first distance, information from the second weather station is presented to the user.
US09807545B2

A communication apparatus comprises a close proximity wireless communication unit which is able to perform close proximity wireless communication with an external apparatus; a power control unit which starts control of power supply of the communication apparatus when the close proximity wireless communication unit receives electromagnetic waves from the external apparatus; and a control unit which executes shutdown processing for reducing power to each block controlled by the power control unit, wherein when the shutdown processing is executed, the control unit disables the close proximity wireless communication unit before start of the shutdown processing.
US09807542B2

An operating method of an electronic device is provided. The method includes selecting a file generated by the electronic device or received from another electronic device and transmitting file information based on the file to a memory device through short range communication.
US09807535B2

Systems and methods for audio control are disclosed. A computer-implemented method includes: determining, by a computing device, an X-Y-Z location of a sound associated with an image object projected on a screen; determining, by a computing device, a front speaker of a front speaker array based on an X-Y coordinate of the X-Y-Z location; determining, by a computing device, at least one side speaker of a left speaker array and a right speaker array based on a Z coordinate of the X-Y-Z location, wherein the left speaker array and the right speaker array are on a side of the screen opposite the front speaker array; and causing, by a computing device, the front speaker and the at least one side speaker to emit the sound.
US09807524B2

Examples of retaining seal assemblies for acoustically sealing and retaining a canal hearing device or an earpiece within the ear canal are disclosed. The retaining seal assembly may include one or more flanges and a clip element. The flanges may include elongate trenches along an exterior surface of one or more of the flanges. The elongate trenches may allow the flange to conform to the shape of the ear canal and distribute concentric compressive forces when the seal assembly is inserted in the ear canal. The clip element may be formed of a relatively rigid material and may include one or more locking tabs. The conforming flanges may be concentrically positioned over the clip element. The seal assembly may include a debris barrier to provide protection for a sound outlet of the canal hearing device or the earpiece.
US09807520B2

The disclosed acoustic device and method of using the same allow perception of a bright, clear sound. In an acoustic device (1) for transmitting sound to a user through vibration conduction by contacting a vibrating body (10a) to a human auricle, when a measurement system (10), provided with an ear model (50) including an artificial auricle (51) and an artificial external ear canal (53) and with a microphone (62) that measures air-conducted sound in the artificial external ear canal (53), measures the air-conducted sound upon the acoustic device (1) outputting a fundamental frequency at a predetermined frequency in an audible frequency band while placed in contact with the ear model (50), three or more harmonics at or above the sixth harmonic and having a volume exceeding a volume 45 dB below the volume of the fundamental frequency are measured.
US09807515B2

A piezoelectric speaker device that includes an organic polymer piezoelectric film, at least one pair of electrodes provided in contact with the piezoelectric film and the at least one pair of electrodes including a user-side electrode on a first side of the piezoelectric film, an insulation layer on the user-side electrode, a flaw detection electrode line on the insulation layer, and a detection circuit configured to detect whether the flaw detection electrode line is in a normal electric conduction state.
US09807502B1

Psychoacoustic models may be applied to audio signals being reproduced by an audio speaker to reduce input signal energy applied to the audio transducer. Using the psychoacoustic model, the input signal energy may be reduced in a manner that has little or no discernible effect on the quality of the audio being reproduced by the transducer. The psychoacoustic model selects energy to be reduced from the audio signal based, in part, on human auditory perceptions and/or speaker reproduction capability. The modification of energy levels in audio signals may be used to provide speaker protection functionality. For example, modified audio signals produced through the allocation of compensation coefficients may reduce excursion and displacement in a speaker; control temperature in a speaker; and/or reduce power in a speaker.
US09807500B2

A interface circuit for an acoustic transducer provided with a first detection structure and a second detection structure has: a first input and a second input; a first processing path and a second processing path coupled, respectively, to the first input and second input and supply a first processed signal and a second processed signal; and a recombination stage, which supplies a mixed signal by combining the first processed signal and the second processed signal with a respective weight that is a function of a first level value of the first processed signal. The first and second inputs receive a respective detection signal associated, respectively, to the first detection structure and to the second detection structure of the acoustic transducer; and an output stage the first processed signal, the second processed signal or the mixed signal, on the basis of a second level value of the first processed signal.
US09807499B2

In one aspect, a first device includes a processor and storage accessible to the processor. The storage bears instructions executable by the processor to receive information pertaining to a location of a user and, based at least in part on the information, determine an apparatus to actuate from among plural apparatuses to participate in communication concerning audio data. The instructions are also executable to, based at least in part on the determination, participate in communication with the apparatus concerning audio data.
US09807495B2

Wearable audio accessories for computing devices are described. In one embodiment the wearable audio accessory provides a speech based interface between the user and a nearby computing device for the performance of user-initiated or computing device initiated microtasks. Information is provided to the user via a loudspeaker and the user can provide input via a microphone. An audio sensing channel within the accessory continuously monitors the audio signal as detected by the microphone and in various embodiments will trigger more complex audio processing based on this monitoring. A wireless communication link is provided between the accessory and the nearby computing device. To mitigate any delay caused by the switching between audio processing techniques, the audio accessory may include a rolling buffer which continuously stores the audio signal and outputs a delayed audio signal to the audio processing engines.
US09807479B2

An adaptive compensation control method for optical communications technologies, which includes acquiring optical label information of an optical signal, where the optical label information carries information about a destination receive port of the optical signal, determining, according to the information about the destination receive port of the optical signal, a switching path, in an optical switch switching matrix, of the optical signal, and determining an optical switch compensation value of the optical signal according to a preset compensation value of each optical switch cell on the switching path, where the optical switch compensation value is used to compensate the optical signal.
US09807476B2

Disclosed is a sensing platform including a server; one or more remote sensing systems coupled to the server, one or more local sensor(s) for target object monitoring; a wireless module coupled to a network through wireless a link; and a processor to read data from local sensor(s) and communicate information through the network using the wireless module. The sensing system has a low power consumption mode in which the processor puts the wireless module and the local sensor(s) in sleep mode or powered off. The processor has a sleep or deep sleep mode, a power-off mode, and a wake up mode, and the local sensor(s) are accessed at a frequency 1/T1 and the wireless module is at lower frequency 1/Tw where Tw>T1, and the server receives monitored value from remote sensing systems and interacts with the remote sensing system.
US09807473B2

Video description generation using neural network training based on relevance and coherence is described. In some examples, long short-term memory with visual-semantic embedding (LSTM-E) can maximize the probability of generating the next word given previous words and visual content and can create a visual-semantic embedding space for enforcing the relationship between the semantics of an entire sentence and visual content. LSTM-E can include a 2-D and/or 3-D deep convolutional neural networks for learning powerful video representation, a deep recurrent neural network for generating sentences, and a joint embedding model for exploring the relationships between visual content and sentence semantics.
US09807470B2

A method and apparatus for providing an object corresponding to output content are provided. The method includes outputting content on a screen, extracting a fingerprint of the content at predetermined time intervals, transmitting the extracted fingerprint to a server, receiving event information related to the content, and in response to an output mode being set as a first mode, displaying an object corresponding to the content on the screen, and in response to the output mode being set as a second mode, displaying additional information of the object corresponding to the content on the screen.
US09807469B2

A system that incorporates teachings of the present disclosure may include, for example, receiving, by a first line card coupled to minimally twisted or non-twisted pair cables, a very high digital subscriber line signal, modifying the very high digital subscriber line signal for transmission over the minimally twisted or non-twisted pair cables to generate an updated very high digital subscriber line signal that overcomes a transmission deficiency, and transmitting from the first line card the updated very high digital subscriber line signal to a second line card to cause the second line card to receive the adapted very high digital subscriber line signal at a desired signal quality and convert the updated very high digital subscriber line signal to a very high digital subscriber line signal for presentation of interactive television services at the customer premise equipment. Other embodiments are disclosed.
US09807467B2

Upstream noise suppression circuits include a splitter and a combiner that are connected by first and second communications paths. An information signal removal circuit is provided on the second communications path and is configured to remove an upstream information signal therefrom. A phase shifter is also provided on the second communications path between the upstream information signal removal circuit and the combiner.
US09807456B1

A system, computer-implemented method and a computer-readable medium for accessing content on a plurality of computing devices from a plurality of independent frameworks. The system includes a virtual backend service (VBS) platform. A plurality of independent frameworks hosted on the VBS platform, where each independent framework is configured to provide access to an independent set of applications that provide a service over a network. The system also includes a configuration module for configuring each computing device in the plurality of computing devices to access the set of applications particular to the independent framework, wherein the configuring dynamically switches access of each computing device between the independent frameworks, and access the service from each framework by the configured computing device.
US09807452B2

A method for content delivery using dynamic adaptive hypertext transport protocol (HTTP) streaming (DASH) without using HTTP. The method includes receiving a media presentation description (MPD) file and one or more DASH segments by a client device. Information in the MPD file is used to filter the one or more DASH segments. The filtered DASH segments are stored in a segments buffer. Particular DASH segments are requested from the segments buffer by the client device based on the information.
US09807450B2

A control device and a computer program product configured to complete the functions of determining that a task needs to be executed, where the task is a task to distribute the media content to a media play apparatus, acquiring device information of the multiple media distribution devices, selecting an available media distribution device from the multiple media distribution devices according to the device information, where the available media distribution device may be configured to process the media content such that the media content has an adaptive media stream format suitable for the media play device, and assigning, when there are multiple available media distribution devices, at least one segment of the media content to each of the available media distribution devices such that the multiple available media distribution devices jointly process the media content.
US09807447B2

A computer device may include logic configured to detect a change in a digital video recorder (DVR) recording list associated with a customer and generate an updated DVR recording list based on the detected change. The logic may be further configured to generate a schedule for an update notification for a DVR device associated with the customer and send an update notification to the DVR device associated with the customer based on the generated schedule.
US09807442B2

The MEDIA CONTENT BASED ADVERTISING SURVEY PLATFORM APPARATUSES AND SYSTEMS (“AD-SURVEY”) transforms user advertisement exposure data via AD-SURVEY components, into ad effects data including user responses to survey questions. A system is disclosed, comprising: a memory; a processor disposed in communication with said memory, and configured to issue a plurality of processing instructions stored in the memory, wherein the processor issues instructions for obtaining TV program schedule listing data including a plurality of ad tags at a server; providing the obtained TV program schedule listing data to a user mobile device, receiving a user media program selection message from the user mobile device; retrieving an ad tag associated with the user selected media program from the TV program schedule listing data; extracting key terms from the ad tags based by parsing ad contents; querying a survey question list based on the extracted key terms; generating and sending a survey question from the query to the user mobile device; and obtaining a user reaction to the survey question.
US09807435B2

A video processing apparatus is used to be connected to a request server and a content server through working network. The video processing apparatus includes a switch board, a adapter plate, a plurality of video processing nodes and a management board. The switch board includes a master switch and a slave switch. The master switch is electrically connected to the slave switch. The adapter plate is electrically connected to the switch board. The adapter plate includes a plurality of automatic cluster management units. The video processing nodes are electrically connected to the automatic cluster management units. The management board is electrically connected to the adapter plate, and monitoring working statue signals of the plurality of video processing nodes via the adapter plate.
US09807430B2

A source device for transmitting content to a sink device is provided. The source device may include an interface configured to perform high-bandwidth digital content protection (HDCP) authentication with the sink device, and a controller configured to determine an HDCP version supported by the sink device, convert the content so as to be encrypted in the HDCP version supported by the sink device in response to a determination that another HDCP version applied to the content is not supported by the sink device, encrypt the converted content in the HDCP version supported by the sink device, and control the interface to transmit the content to the sink device.
US09807427B2

A better compromise between encoding complexity and achievable rate distortion ratio, and/or to achieve a better rate distortion ratio is achieved by using multitree sub-divisioning not only in order to subdivide a continuous area, namely the sample array, into leaf regions, but using the intermediate regions also to share coding parameters among the corresponding collocated leaf blocks. By this measure, coding procedures performed in tiles—leaf regions—locally, may be associated with coding parameters individually without having to, however, explicitly transmit the whole coding parameters for each leaf region separately. Rather, similarities may effectively exploited by using the multitree subdivision.
US09807424B2

During a video encoding or decoding process, a predicted prediction block is generated for a CU. The CU may have two or more prediction units (PUs). A computing device selects a neighbor region size. After the computing device selects the neighbor region size, samples in a transition zone of the prediction block are identified. Samples associated with a first PU are in the transition zone if neighbor regions that contain the samples also contain samples associated with a second PU. Samples associated with the second PU may be in the transition zone if neighbor regions that contain the samples also contain samples associated with the first PU. The neighbor regions have the selected neighbor region size. A smoothing operation is then performed on the samples in the transition zone.
US09807419B2

A device for video encoding multi-layer video data includes a memory configured to store at least a portion of a multi-layer bitstream of video data and one or more processors configured to: encode a first access unit comprising at least a layer and a reference layer of the layer; determine if the first access unit is a recovery point; in response to the first access unit being a recovery point, include in the first access unit, a recovery point SEI message that applies to at least the layer and the reference layer; and generate the first access unit with the SEI message.
US09807412B2

A method for decoding an image according to the present invention comprises the steps of: restoring a residual block by performing inverse quantization and inverse transformation for the entropy-decoded residual block; generating a prediction block by performing intra prediction for a current block; and restoring an image by adding the restored residual block to the prediction block, wherein the step of generating the prediction block further comprises a step for generating a final prediction value of a pixel to be predicted, on the basis of a first prediction value of the pixel to be predicted, which is included in the current block, and of a final correction value that is calculated by performing an arithmetic right shift by a binary digit I for a two's complement integer representation with respect to an initial correction value of the pixel to be predicted. The operational complexity during image encoding/decoding can be reduced.
US09807407B2

Techniques are described where a device that includes a video decoder outputs information identifying a picture to a device that includes a video encoder. The video encoder may determine pictures that could have been used to inter-prediction encode the identified picture and/or pictures following the identified picture in coding order. The video encoder may inter-prediction encode a current picture based on one or more of the determined pictures and/or the identified picture.
US09807405B2

Provided are a video encoding method and a video decoding method according to spatial subdivisions based on splitting a picture into a first tile and a second tile, and splitting a current tile among the first tile and the second tile into at least one slice segment, encoding the first tile and the second tile, independently from each other, and encoding maximum coding units of a current slice segment among the at least one slice segment included in the current tile, with respect to the at least one slice segment included in the current tile.
US09807404B2

Provided are a video encoding method and a video decoding method according to spatial subdivisions based on splitting a picture into a first tile and a second tile, and splitting a current tile among the first tile and the second tile into at least one slice segment, encoding the first tile and the second tile, independently from each other, and encoding maximum coding units of a current slice segment among the at least one slice segment included in the current tile, with respect to the at least one slice segment included in the current tile.
US09807393B2

A video encoding method and apparatus, and a video decoding method and apparatus for generating a reconstructed image having a minimized error between an original image and the reconstructed image. The video decoding method accompanied by a sample adaptive offset (SAO) adjustment, the method includes: obtaining 5 slice SAO parameters with respect to a current slice from a slice header of a received bitstream; obtaining luma SAO use information for a luma component of the current slice and chroma SAO use information for chroma components thereof from among the slice SAO parameters; determining whether to perform a SAO operation on the luma component of 10 the current slice based on the obtained luma SAO use information; and equally determining whether to perform the SAO adjustment on a first chroma component and a second chroma component of the current slice based on the obtained chroma SAO use information.
US09807388B2

The present disclosure relates to the use of adaptive intra-refreshing of video coding units to improve video perceptive quality by reducing artifacts such as I-pulsing. A picture to be encoded as an inter-coded picture is received from a video stream. A coding unit of the picture is encoded using an inter-predicted mode or an intra-predicted mode, where the mode is selected according to a selection function applied to the coding unit. The selection function is biased based at least in part on a temporal distance between the picture and a nearest intra-coded picture in the video stream. In various embodiments, bit rate, distortion from prediction errors, quantization factors and differences between pictures, content information, hypothetical reference decoder buffer information, group of pictures length, position of the coding unit, and/or other information may be factors employed in the selection function.
US09807368B2

A plenoptic camera is proposed having a color filter array positioned on an image sensor with an array of pixels, the color filter array having a first filter with a set of unit elements, each unit element covering M×M pixels of the image sensor, with M an integer such that M≧2. The plenoptic camera further includes a set of micro-lens, each micro-lens delivering a micro-lens image on the image sensor with a diameter equal to p=k×M, with k being an integer greater than or equal to two. The first filter is remarkable in that the set of unit elements comprises an initialization unit element being associated with a matrix ( c m , n ) 0 ≤ m < M 0 ≤ n < M indicating a filter repartition (or pattern), where each coefficient cm,n is associated with a filter value, and in that the other unit elements are associated with matrixes with coefficients set to c(x+i)modM,(y+j)modM, for corresponding pixel (x,y,i,j) on the image sensor, where indexes x, y relate to indexation of a pixel in the image sensor, and indexes i,j relate to indexation of a micro-lens in the set of micro-lens.
US09807367B2

A light field image capturing apparatus includes: a main lens, configured to transmit light of an object environment, and including an optical axis; a beam generation unit, configured to receive the light transmitted by the main lens and generate plurality Bessel-beams, where the beam generation unit includes plurality slits or conical lenses arranged in an array manner and configured to generate the Bessel-beam respectively; a micro-lens unit, configured to receive the Bessel-beam generated by the beam generation unit, and including plurality micro-lens elements corresponding to the beam generation unit, wherein each micro-lens element is configured to determine a focus point generated after the Bessel-beam passes through each micro-lens element, and a focal length of a distance between the focus point and the micro-lens element; and a light sensing unit, including a focal plane, and configured to enable the focus point to be focused on the focal plane.
US09807350B2

Systems and associated methods for capturing media content for a plurality of guests and intelligently parsing the media content to produce a customized/personalized media product for a particular guest or group of guests are described. A system is configured for combining video data and position tracking data to record a group guest experience or show and automatically provide custom media products. Embodiments record a plurality of guests throughout an experience or show, and simultaneously position track each guest individually. Embodiments utilize the tracking data to extract a sub-sampled video of each guest. This sub-sampled video is combined with additional media automatically according to a script. The result is a personalized video take-away for each guest, which can be created entirely without human intervention.
US09807346B2

This invention concerns the in-situ monitoring of insects, and in particular an insect inspection cylinder and trap to facilitate this monitoring. The trap comprises means to intercept flying insects and direct them to an inspection cylinder that is connected to an outlet from the means to intercept flying insects. An insect detector is associated with the cylinder to detect insects inside it, and a camera is associated with the cylinder and the detector to capture images of insects inside the cylinder. Wherein the sectional dimensions of the inspection cylinder are sized to prevent insects selected for observation from flying through it, but instead requiring them to walk through it.
US09807341B2

In a communication event between a first user and one or more second users via a communication network, a plurality of video streams is received via the network. Each of the streams carries a moving image of at least one respective user. The moving image of a first of the video streams is displayed at a user device of the first user for a first time interval. In the moving image of a second of the video streams that is not displayed at the user device in the first time interval, a human feature of the respective user is identified. A movement of the identified human feature during the first time interval that matches one of a plurality of expected movements is detected. In response to the detected movement, at least the moving image of the second video stream is displayed at the user device for a second time interval.
US09807336B2

A technique, as well as select implementations thereof, pertaining to dynamic adjustment of video frame sampling rate is described. The technique may involve receiving a first video signal comprising a first plurality of video frames and determining a frame rate of the first plurality of video frames. The technique may also involve adjusting a sampling rate according to the determined frame rate of the first plurality of video frames. The technique may further involve sampling the first plurality of video frames at the adjusted sampling rate. The technique may additionally involve generating a second video signal comprising a second plurality of video frames based on the sampled first plurality of video frames.
US09807331B2

A solid-state imaging device comprises a first pixel group includes a first photoelectric conversion unit that converts into electric charges reflection light pulses from an object irradiated with an irradiation light pulse, a first electric charge accumulation unit accumulating the electric charges in synchrony with turning on the irradiation light pulses, and a first reset unit resetting the electric charges; and a second pixel group includes a second photoelectric conversion unit that converts the reflection light into electric charges, a second electric charge accumulation unit that accumulates the electric charges synchronously with a switching the irradiation light pulses from on to off, and a second reset unit that releases a reset of the electric charges converted by the second photoelectric conversion unit.
US09807319B2

Wearable systems with thermal imaging capabilities may be provided for detecting the presence and location of persons or animals in an environment surrounding the system in accordance with an embodiment. A wearable system may include a wearable structure such as a helmet with a plurality of imaging modules mounted to the wearable structure. An imaging module may include one or more imaging components such as infrared imaging modules and visible light cameras. Thermal images captured using the infrared imaging modules may be used to detect the presence of a person in the thermal images. The wearable imaging system may include one or more alert components that alert the wearer when a person is detected in the thermal images. The alert components may be used to generate a location-specific alert that alerts the wearer to the location of the detected person. A wearable imaging system may be a multidirectional threat monitoring helmet.
US09807316B2

An image segment method is provided in this disclosure. The method is suitable for an electronic apparatus including a first camera and a motion sensor. The method includes steps of: providing at least one pre-defined model mask; fetching pose data from the motion sensor, the pose data being related to an orientation or a position of the first camera; adjusting one of the at least one pre-defined model mask into an adaptive model mask according to the pose data; and, extracting an object from an image captured by the first camera according to the adaptive model mask.
US09807312B1

An iris of a mobile terminal includes a cover having a through hole therein and forming an internal space, a first blade disposed in the internal space and having a first through hole communicating with the through hole, a second blade disposed to overlap the first blade in at least a portion thereof within the internal space, communicating with the through hole, and having a second through hole formed to adjust a region in which light is incident through interference with the first through hole, and a link member connected to one end portion of each of the first and second blades and varying an aperture of the iris by moving at least one of the first and second blades.
US09807297B2

Provided is a depth detection apparatus having: a shift amount acquisition unit to acquire a provisional image shift amount; a filter processing unit to perform filter processing on one or both of the first and second signal; and a depth deriving unit to derive the depth information on an object, based on a positional shift amount between the filtered first signal and the filtered second signal. A phase term of the filter is a function generated by a second function by a coefficient, wherein the second function is generated based on a phase transfer function corresponding to the first or second pupil region and on the provisional image shift amount, and the coefficient is a real number greater than 0 and smaller than 1.
US09807292B2

Technologies for calibrating a pan tilt unit with a robot include a robot controller to move a camera of the pan tilt unit about a first rotational axis of the pan tilt unit to at least three different first axis positions. The robot controller records a first set of positions of a monitored component of the robot in a frame of reference of the robot and a position of the camera in a frame of reference of the pan tilt unit during a period in which the monitored component is within a field of view of the camera for each of the at least three different first axis positions. Further, the robot controller moves the camera about a second rotational axis of the pan tilt unit to at least three different second axis positions and records a second set of positions of the monitored component in the frame of reference of the robot and a position of the camera in the frame of reference of the pan tilt unit during a period in which the monitored component is within a field of view of the camera for each of the at least three different second axis positions. Further, the robot controller determines a transformation from the frame of reference of the robot to the frame of reference of the pan tilt unit based on the first set of recorded positions and the second set of recorded positions.
US09807288B2

In accordance with disclosed embodiments, there are provided methods, systems, and apparatuses for implementing multi-lens array cameras and mounts. In one embodiment there is a lens mount assembly, having therein a lens mount with a front side and a back side; a lens array mounted to the front side of the lens mount, the lens array having a plurality of optics embedded within lenses mounted to the front side of the lens mount; a plurality of image capture circuits at the back side of the lens mount, the plurality of image capture circuits having a one to one correspondence to the lenses of the lens array mounted to the front side of the lens mount; and a plurality of receiving couplers at the front side of the lens mount, each to receive one of the lenses of the lens array, wherein the receiving couplers mechanically bring the optics of the respective lens mounted thereto into alignment with a corresponding one of the image capture circuits on the back side of the lens mount opposing the mounted lens. The lens mount assembly may be embodied within a camera body assembly such as a hand-held smart phone, a tablet computing device or a stand alone hand held camera. The lens mount assembly may be interchangeable with other lens mount assemblies for a multi-lens array camera. Other related embodiments are disclosed.
US09807274B2

Portable information devices each include a portable-side communication unit to communicate with an image processing apparatus within a range of a predetermined distance, and a portable-side control unit. The portable-side control unit executes the steps of: specifying a linked process; displaying an operation screen for accepting a setting value corresponding to the linked process in a state in which the portable-side communication unit is unable to communicate with the image processing apparatus; accepting a setting value from a user; in response to the portable-side communication unit becoming able to communicate with the image processing apparatus, transmitting a setting request and receiving a response to the setting request from the image processing apparatus; if the response indicates to start the linked process, transmitting/receiving data in cooperation with the image processing apparatus; and if the response requests a setting value, displaying an operation screen for setting the requested setting value.
US09807271B2

A function performing apparatus may perform: judging whether the function performing apparatus is in a placed state or a non-placed state; causing a scan performing unit to perform a scanning of the document, in a first case where a communication session is established while the function performing apparatus is in the placed state; not causing the scanner to perform the scanning of the document, in a second case where the communication session is established while the function performing apparatus is in the non-placed state; creating, in a case where the scanning of the document is performed, image data based on a scan result obtained from the scanner; and sending the created image data to a communication apparatus via an interface by using a wireless network.
US09807267B2

An automatic document feeder includes: a recording-medium set unit, on which a recording medium is set; a recording-medium set detecting unit that detects whether the recording medium is set on the recording-medium set unit; a conveying unit that conveys the recording medium; a sheet-feeding cover section that constitutes part of the conveying unit and that includes an openable and closable sheet feeding cover; and a control unit that separately receives a power-on signal, which is output when a power source of an image forming device including the automatic document feeder is turned on, and an energy-saving return signal, which is output when a return is made from an energy saving state where a power source of part of the device is disconnected. When the power-on signal is received, the control unit performs an initialization operation to initialize each unit of the automatic document feeder.
US09807266B2

In an image forming apparatus, when a pivot plate is at a closed position, a free end of the pivot plate is at a vertical level higher than first and second hinge portions which are arranged apart from each other in a width direction along a horizontal direction. A free end of the pivot plate moves in a space defined between first and second virtual vertical planes. The first virtual vertical plane is defined as a virtual vertical plane, on which a widthwise inner end of a first hinge portion is disposed, and which is perpendicular to a rotational center axis of the first hinge portion. The second virtual vertical plane is defined as a virtual vertical plane, on which a widthwise inner end of the second hinge portion is disposed, and which is perpendicular to a rotational center axis of the second hinge portion.
US09807262B2

In a relaying apparatus, a storage stores a plurality of sets of first device information, and second device information assigned to a first set of first device information identifying one image processing apparatus from among image processing apparatuses. The controller communicates with the one image processing apparatus and a service-providing apparatus. The controller receives replacement request information from the one information processing terminal via the communication interface. The replacement request information including old first device information and new first device information. The old first device information indicates the one image processing apparatus. The new first device information indicates another image processing apparatus. The controller replaces the first set of first device information so that the first set of first device information identifies the another image processing apparatus indicated by the new first device information instead of the one image processing apparatus indicated by the old first device information.
US09807256B1

A system and method for designing and printing fantasy draft board posters using a client computer communicating with a host computer. The host computer provides a design interface to a user, and the user selects a template design. The template design requires a user to input a variety of client-defined material with a header, and select the number of teams and rounds. The client-defined material is displayed actively on a scratch pad image, and determines the dimensions of the final format of the draft board poster. The final print image file for the poster is then created and printed.
US09807253B2

Methods and apparatus for predicting colorant usage by printing devices are provided. A prediction server can receive a request to predict colorant usage for a first printing device. The prediction server can determine first plurality of functions to predict colorant usage for the first printing device. The first plurality of functions can include at least one linear function and at least one non-linear function. The first plurality of functions can be based on colorant-usage rates indicating historical rates of change in colorant used by the first printing device. The prediction server can determine a prediction of colorant usage for the first printing device using the first plurality of functions. The prediction server can provide an output involving the prediction of colorant usage for the first printing device, where the prediction of colorant usage can include a confidence interval related to the prediction.
US09807249B2

Aspects of this disclosure are directed to a method of routing toll-free telephone calls using a toll-free exchange, thereby minimizing the number of hand-offs, increasing the technological capability and reducing the ultimate cost of the toll-free call. Toll-free subscribers are generally assessed a cost based on each exchange plus the duration of the call. Subscribers are also limited to the decades old technological standards of PSTN switching. It is therefore an object of the present disclosure to minimize the number of exchanges, promote technological possibility and simplify the process of directing a toll-free telephone call by providing a toll-free exchange.
US09807244B2

An embodiment of the system for publishing events of a telephony application to a client includes a call router that generates events from the telephony application and an event router that manages the publication of events generated by the call router and that manages the subscription to events by clients. The system can be used with a telephony application that interfaces with a telephony device and an application server.
US09807243B2

A method and a system for voice transmission control. The method comprises: receiving, by a voice answering device, a voice command and transmitting the voice command to a sound control server through a network data transmission channel; recognizing, by the sound control server, the voice command, generating corresponding second VXML control information based on a recognition result, and transmitting the second VXML control information to the voice answering device through the network data transmission channel; and performing, by the voice answering device, an operation according to the received second VXML control information. With this method, the architecture and workflow of the communication system can be simplified, and the difficulty of design thereof can be reduced.
US09807235B1

Various embodiments of the invention provide methods, systems, and computer-program products for pacing outbound calls placed by a predictive dialer in a contact center. Specifically, an ensemble made up of a global predictive model and a local predictive model is applied to each dialing record found in a plurality of dialing records to provide a probability of an outbound call placed to the dialing record resulting in a live connect. Accordingly, a call pacing hit ratio can then be calculated based on the probability for each of the dialing records and this call pacing hit ratio can be used by a predictive dialer in various embodiments to more accurately pace the placing of outbound calls then by using conventionally derived call pacing hit ratios.
US09807231B2

A system, method, and computer readable medium for providing additional information to called parties comprises receiving a call from a calling party, performing a lookup of information associated with the calling party in a database, receiving the information from the database, and forwarding the information to a called party. The system comprises at least one device for receiving a call from a calling party, and at least one database for storing information associated with the calling party, wherein the at least one device is operable to perform a lookup of information associated with the calling party in a database, receive the information from the database, and forward the information to a called party.
US09807229B1

A minimum confidence level is applied to recognize a localizable wireless system debility from a debility which is invariant from place to place or which cannot be significantly distinguished from service performance levels of comparable mobile user terminals in the network as a whole. Reports received by the population of users of a service or product family are scored, aggregated, normalized, and averaged overall and for each geographic service area. A report is received from a particular end user and the customer operated wireless instrument and transformed into an individual user experience score over a length of time and breadth of locations. The reports provided by the population of users are transformed into a population experience score that reflects usage in the same time and locations reported from the wireless instrument of the particular end user. Various potential causations are considered and those which exceed a minimum level of confidence are presented.
US09807227B2

An electronic device and method for entering an inactive mode, the electronic device including a display; and one or more processors. The processors may implement the method, which includes detecting an input to the electronic device indicating deactivation of a display of the electronic device or entrance into an inactive mode, detecting whether one or more objects executing one the one or more processors force the one or more processors to remain in an active mode, and when the one or more objects are detected, retrieving information on the one or more objects and display on the display the retrieved information.
US09807226B2

Proximity of a user/device to a designated location or other user/device can be determined and used to trigger automatic reconfiguration of a telephone ring list associated with the user/device. Accordingly, there is no need for manual reconfiguration to accommodate changes in the user's location or schedule. Specific phone numbers may be added or removed from a user's ring list based on proximity information, and the ring list may be reconfigured as the user arrives at or departs from a designated location. The user's desired phones will automatically ring for incoming calls based on the ring list and/or an identification of the incoming call.
US09807221B2

Systems, devices, and methods that are effected in or by an electronic device in response to establishing and/or terminating a physical communications link are described. An electronic device may be entered into deep sleep and may include a power control circuit that activates the device out of deep sleep in response to establishing a physical communications link with a source of electric power, such as another electronic device. Either in combination with or separate from this, an electronic device may establish wireless communications with another electronic device in response to establishing and terminating a physical communications link with the other electronic device. The physical communications link may be used to transfer device identity data from one device to the other and thereby bypass the cumbersome “discovery” process common to conventional wireless communication techniques. Portable electronic devices and personal computing devices that are operative to perform the above are described.
US09807217B1

A computer-implemented method of determining when an audio notification should be generated includes detecting receipt of a triggering event that occurs on a user device; generating, based on detecting, the audio notification for the triggering event; receiving, from the user device, a user voice command responding to the audio notification; and generating a response to the user voice command based on one or more of (i) information associated with the audio notification, and (ii) information associated with the user voice command.
US09807214B2

Architecture that enables the implementation of temporary contacts by the inclusion of additional data with each contact. The additional data can comprise geolocation data such as GPS coordinates, triangulation information, or other geographical coordinate or location data technologies. Additionally, the mere presence of the additional data can be a trigger to interact with the user as to if the contact should be maintained in the long term or removed in the short term. The association of the geolocation location data of a mobile device with a contact being added and intelligent use of the geolocation data enables prompting of the user to delete or mark for deletion the contact as a temporary contact or retain the contact until marked for removal and removed. Spatial and/or temporal criteria can be manually selected or automatically set for all designated temporary contacts or on an individual basis.
US09807208B2

A 10GBASE-T circuit is disclosed. The circuit includes a physical (PHY) integrated circuit and a media access control (MAC) integrated circuit. The PHY couples to a data transfer medium and carries out data transfers at a PHY data rate. The MAC integrated circuit controls access to the date transfer medium and couples to the PHY via a bidirectional link operating at a MAC data rate. Rate control logic detects the PHY data rate, and adjusts the MAC data rate to the PHY data rate. Changes to the PHY and MAC data rates may be made at rates higher than 1 Gbps.
US09807195B2

A system for presenting a clinical process of a patient in a clinical facility having a network, a system backend communicable with the network, and at least one mobile device communicable with the system backend, the mobile device comprising a mobile processor and a display, the mobile processor configured to operate in at least one first user interface mode and at least one second user interface mode, where the mobile processor is configured to enable the operation of at least one built-in function when operating in the at least one first user interface mode and where the mobile processor is configured to disable the operation of the at least one built-in function when operating in the at least one second user interface mode. The mobile processor operating in the at least one second user interface mode is configured to present a list of one or more patients each with a corresponding clinical process, each patient listing configured to re-enable access to the at least one built-in function associated with the corresponding clinical process of the listed patient.
US09807187B2

Various embodiments described or referenced herein are directed to different devices, methods, systems, and computer products for providing information external to an organization in an information feed. A message may be received from an information service provider in accordance with a previously defined request. The defined request may include one or more parameters specifying requested data. The message may include data provided in accordance with the one or more parameters. The data in the message may be processed to create a data object. The data object may include at least a portion of the data provided in accordance with the one or more parameters. The data object may be stored in a database. The data object may then be provided for display on a display device in an information feed associated with the record.
US09807185B2

In one embodiment, a method includes collecting, by one or more computing devices, multiple information items of multiple types relevant to a user, where the information items are collected from a social-networking system, and the user is a member of the social-networking system. The method further includes determining a relevance value for each of the information items and classifying each information item as being deterministic or non-deterministic based at least in part on the relevance value. The method also includes sending one or more push notifications to one or more client devices associated with the user, the push notifications including one or more of the information items classified as non-deterministic sent in an order of their respective relevance values. The method also includes storing the information items classified as deterministic for later retrieval by the user.
US09807174B2

A medication delivery system includes a medical server configured to send and receive and process data, a medication device configured to administer a preselected medication, a sensor circuit configured to detect selected parameters relating to medication delivery and transmit information, a transmission hub configured to communicate with the medical server and the sensor circuit. The transmission hub is configured to receive a signal from the sensor circuit and exchange the information. An application is configured to facilitate exchange of information between the sensor circuit and the medical server. The application has a preselected set of protocols. The application monitors usage of the medication device and location of the medication device by connecting to the medication device via the transmission hub.
US09807166B2

A system and method for storing and retrieving preconfigured, hidden SyncML server profiles on a client is described. Conventionally, users of client devices need to manually configure the devices to allow for synchronization with new servers via SyncML. Preconfigured SyncML profiles allow a client to synchronize with a SyncML server without having to generate a new SyncML profile, thereby improving user experience. The preconfigured SyncML profiles may be hidden from a user or displayable to a user.
US09807153B2

A mechanism is described for provisioning remote desktops in a cloud based infrastructure while maintaining user personalization. In cloud based systems, a user may not always reconnect to the same VM endpoint. In one embodiment, the virtual hard disk assigned to a user is mounted to the endpoint assigned to the user. The virtual hard disk includes the user's personal data and personalization information (e.g., settings, profiles, files, etc.). When the user disconnects from the remote desktop, the virtual hard disk is demounted from the endpoint. The virtual hard disk thus provides information regarding the user's state when the user is disconnected.
US09807151B2

A method and an electronic device for sending and receiving data are provided. The method of the electronic device for sending and receiving data includes detecting a communication event of other electronic device, if detecting the communication event, sending information of an application running on the electronic device, to the other electronic device, receiving information of an application running on the other electronic device, from the other electronic device, determining an application execution screen by comparing the application information of the electronic device with the application information received from the other electronic device, and displaying the determined application execution screen.
US09807150B2

A method includes transmitting a request to a server from a mobile device. The request may be initiated by an application executing on the mobile device. The method includes receiving a message at the mobile device from the server. The message may include first validation information and information indicating a location where the mobile device can retrieve content. The method includes retrieving the content from the location indicated in the message, and generating second validation information based on the retrieved content. The method includes validating the content based on a comparison of the first validation information and the second validation information. The method includes selectively storing the content based on whether the validation of the content indicates the content is valid. The content may be stored for subsequent publication at the mobile device via the application. The content may be published while the mobile device is offline.
US09807139B2

A system and method for streaming media and, more particularly, to a system and method for active transcoding of content in a distributed system. The method includes receiving a file having predetermined parameters and sizing the file up to an optimal packet size according to a logarithmic scheme. The optimal packet size is a largest packet size. In further aspects, the method also includes providing a computer infrastructure operable to perform the steps herein. The system includes a media service, rules engine, log based job creator and a stream constructor. A computer infrastructure having computer readable medium to perform the processes described herein is also provided.
US09807129B2

A logical communication path is provided between a target virtual machine (VM) and a host or application communicating with the VM. The target VM runs on a hypervisor host that has a hypervisor and a proxy agent. The hypervisor manages execution of the VM. A mapping is maintained indicating which VMs execute on which hosts. When the host or application is to send a message or packet to the target VM, the mapping is consulted and the hypervisor host hosting the target VM is identified. The message or packet, which may identify the target VM, is transmitted to the hypervisor host. A proxy agent at the hypervisor host selects a communication channel between the hypervisor and the target VM. The hypervisor then passes the message or packet through the selected channel to the target VM.
US09807124B2

A network provisioning system includes a computer-based set of instructions that receive, from a third party network provisioning system managed by a third party service provider, provisioning information associated with a wiretap to be setup on a customer communication device. The instructions then transmit the provisioning information to a policy server in a network domain. Thereafter, when the media gateway transmits a policy request message to the policy server to establish a call session for the customer communication device, the policy server issues instructions to establish the wiretap in the media gateway.
US09807111B1

The disclosed computer-implemented method for detecting advertisements displayed to users via user interfaces may include (1) monitoring, via an accessibility API provided by an operating system of the computing device, accessibility events that indicate state transitions in user interfaces of applications running on the computing device, (2) determining, based on an analysis of at least one accessibility event, that an advertisement is being displayed to a user within a user interface of an application running on the computing device, and (3) in response to determining that the advertisement is being displayed, performing at least one action to prevent the advertisement from interfering with interactions between the user and the application. Various other methods, systems, and computer-readable media are also disclosed.
US09807105B2

Generating a behavior profile is provided. A newness score is calculated for a data point corresponding to a context of an access request to a resource made by a user of a client device. Newness scores for a plurality of data points corresponding to contexts of a plurality of access requests are aggregated to form an aggregated newness score. In response to determining that the aggregated newness score is greater than or equal to a pre-defined newness score threshold, data points stored in a data point cache and a long-term storage are used to generate a new behavior profile for the user or update an existing behavior profile for the user.
US09807098B2

Systems and methods here may be used for authorizing network access including using by a server computer with a processor and memory, for receiving, through the gateway support node, a request to access the first network associated with the gateway support node from a client device, wherein the request includes a client device identifier, sending a validation request of the client device identifier to the data storage server, receiving a validation response based on previously registered client device identifier information and previously registered credential information from a second network, from the data storage server and sending authorization approval to the gateway support node for the client device access request to the first network.
US09807095B2

Remote media access is facilitated. According to an example embodiment, remote-user media access is facilitated using media provided by a subscriber media source, over a packet-based network. This access is facilitated in an environment involving subscriber users that provide media for transfer over a packet-based network to a remote device. A host server receives a request for access to media content provided by a subscriber. The request is authorized as a function of authorization criteria. In response to the request being authorized, a media source associated with the subscriber is controlled to provide requested media for access at a remote device. A media player is displayed at the remote device, and the media is provided for access via the media player.
US09807092B1

A dynamic access pricing and active countermeasure system and method for detecting and protecting against automated Internet attackers that incapacitates or disables the attackers. The dynamic access pricing and active countermeasure generally includes 1) the provision of a device fingerprint by a device at the start of an iteration of the client-puzzle challenge-response protocol; 2) a dynamic access pricing policy associated with a transaction identifier; 3) the determination of the puzzle difficulty level based on the interaction history of the device fingerprint solely with respect to the dynamic access pricing policy; 4) the binding of the device fingerprint to the client puzzle challenge; the generation of transaction authorization codes that the device presents to a protected application, system, interface or device.
US09807081B2

Techniques enabling live tiles without application-code execution are described. These techniques permit live content to be presented in tiles without executing code of applications associated with those tiles. By so doing, live tiles may be presented more safely, faster, or using fewer resources.
US09807080B2

An approach is provided for providing authentication session sharing between browsers and run time environments in network communication. An interface receives an authentication context associated with a first service. The interface causes, at least in part, storage of the authentication context in a first cache associated with the interface. The interface causes, at least in part, population of the authentication context to a second cache associated with a second service. The second cache is not directly linked to the interface. The authentication context in the second cache authenticates access to the second service.
US09807066B2

Techniques from the proposed invention relate to providing enhanced security. For example, techniques described herein allow a computer system, such as a mobile device, to support a wide variety of security functions and security sensitive applications on a mobile device by providing enhanced security via secure input and output data transmission and verification through a secure module. The secure module may cause user interfaces to be provided to users by providing obfuscated user interface data to the operating system that do not reveal elements that are part of the user interfaces. The secure module may receive obfuscated user input values representing user input values, and de-obfuscate these user input values, whereby the actual input values are not exposed to the underlying operating system. The secure module may track the flow of user input/output data through the computing device to ensure the integrity and authenticity of this data.
US09807062B2

A method and apparatus for enabling a cloud server to provide screen information data indicating a screen to be displayed on a client device are provided. The method of enabling a cloud server to provide screen information data relating to a screen to be displayed on a client device includes: generating the screen information data; determining whether or not to protect the generated screen information data based on characteristics of an object configuring the screen; encrypting the provided screen information data based on the determining; and transmitting the encrypted the screen information data to the client device.
US09807058B2

Techniques and devices for circumventing wireless data monitoring in communications between a communication device and a proxy server, as well as systems and techniques for detecting and resolving vulnerabilities in wireless data monitoring systems are described herein. The techniques for circumventing wireless data monitoring may include manipulating a routing table of a communication device, encapsulating data in an unmonitored protocol, and transmitting the encapsulated data in a “bearer,” or communications channel, to a proxy server that fulfills requests included in the encapsulated data. Furthermore, the techniques for detecting and resolving network vulnerabilities may include restricting protocols by bearers in an Access Control List, limiting a bandwidth of a bearer, or protecting a routing table in a secure location of the communication device.
US09807055B2

A method for preventing network attacks on baseboard management controllers. The method includes receiving, by the network controller, a packet from a computer networking device on a computer network, where the packet is destined for a baseboard management controller (BMC); determining, by the network controller, whether the packet contains a tag identifying that the packet has been determined to be free of suspicious or malicious traffic; on condition that the packet has been determined to not contain the tag, sending the packet to a network inspection module, by the network controller, to be inspected for suspicious or malicious traffic; and on condition that the packet has been determined to contain the tag, sending the packet to the BMC by the network controller using a side band interface.
US09807050B2

Internet protocol addressing to uniquely identify clients and destinations across computer networks is provided. Communication between a proxy service and a DNS nameserver is facilitated to permit the DNS nameserver to send a subscriber identifier to the proxy service in response to a DNS request for a flagged domain name. The proxy service selects a unique IP address from a pool of IP addresses assigned to the proxy service. The proxy service associates the selected IP address with the subscriber identifier and optionally, the target domain name of the DNS request. The proxy service provides the unique IP address to the DNS nameserver which returns the unique IP address to the client device for the target domain name. The subscriber can then be authenticated at the proxy service transparently without input from the subscriber or client device based on the unique IP address provided by the client device to the proxy service.
US09807047B2

A method for a computer system includes receiving a first user communication, determining a first group of users, determining a target number of users, determining whether the first group of users includes the target number of users, and if not, providing the communication to the first group of users, determining a hierarchal mapping of groups of users in response to user memberships, determining a second group of users from the hierarchal mapping, determining a plurality of social network relationship factors for the second group of users with respect to the first user, and providing the communication to at least a subset of users in the second group of users in response to the first plurality of social network relationship factors.
US09807044B2

A message originator may generate messaging data for selective communication by a messaging provider via an interface generated by a browser software application. The user may also interact with various content providers such that event data is generated based on the user interaction with each content provider. The messaging provider can then obtain the messaging data and the event data to determine a target set of messages to be published. Additionally, the messaging provider can select a set of message recipients to receive, or otherwise access, the target set of messages based on filtering criteria submitted by the message originator, content provider, service provider, and/or message recipients. Credit may be allocated based on activity associated with the communicated messages. The messaging provider may also facilitate additional interaction between the message originator and the message recipients including the initiation of additional communication channels.
US09807041B2

In accordance with an embodiment, described herein is a system and method for providing a user messaging service for use with a cloud computing environment. In accordance with an embodiment, the system includes a notifier component, which receives information describing notifiable events that occur within the cloud environment during the provisioning of the enterprise applications, and communicates the information to a user messaging service at a user messaging server. The user messaging service is configured, according to one or more user communication preferences, to communicate to users, notifications describing the notifiable events, via one or more channels according to the preferences associated with the users. For example, a cloud account user can indicate a preference that status notifications for that user, such as completion of an operation or operational alerts, be communicated via one or more preferred channels, for example email, instant messaging, or social media.
US09807038B2

Provided is a technique for transmitting and receiving a chat message through a message server. A user may transmit and receive a chat message to and from a friend of a first type and may receive a chat message from a friend of a second type, and receive various chat messages from a company supporting the friend of the second type.
US09807029B2

A method for determining a Quality of Service (QoS) policy can be based on requested bandwidth. The method may initially receive a connection request which includes a requested bandwidth that corresponds to an application. The method may then determine a policy for an application data flow associated with the application based on the connection request. A bandwidth designation, which is based on the requested bandwidth, may be assigned to the application data flow based on the determined policy. Finally, the policy and the bandwidth designation may be provided so that a bearer can be assigned.
US09807010B2

Disclosed herein are methods and systems for detecting congestion in a mobile network and for determining those end-user mobile devices that are affected. In one embodiment, a server communicates with a set of mobile devices, on which have been installed a suitable client application. At certain times, the server initiates a congestion detection routine. The server may request the mobile devices to report on their current wireless attachment point to the mobile network. The server can then test for congestion by performing a data transfer between itself and the mobile clients, which may be in either direction. The server can use the results to determine whether a given attachment point is congested. In one embodiment, a dynamically selected, random subset of mobile devices for a current attachment point are tested, and the result is imputed to all mobile devices similarly situated.
US09807002B2

Methods, apparatus and articles of manufacture (e.g., physical storage media) to perform centralized route determination in communication networks (e.g., such as software defined networks) are disclosed. Example methods for route determination disclosed herein include accessing, with a controller of a software defined network, a first set of constraints specifying whether route splitting is permissible for respective ones of a set of flows in the software defined network. Such disclosed example methods also include accessing, with the controller, a second set of constraints specifying respective bandwidth demands for the respective ones of the set of flows in the software defined network. Such disclosed example methods further include determining, with a linear programming model implemented by the controller, a set of routes based on the first and second sets of constraints, wherein the set of routes is to route the set of flows in the software defined network.
US09806993B1

Techniques for multi-path routing of packets to a destination node based on multiple routing tables of a router device. In an embodiment, a router device includes port groups which each correspond to a different respective network path to the same destination node. In another embodiment, each routing engine of multiple routing engines in a router device routes packets to the destination node based on a different respective one of multiple routing tables. The routing tables may include respective entry sets which, at least with respect to routing packets to the destination node, dedicate each routing engine to a respective one of the port groups.
US09806987B2

A method for reducing response times in an information-centric network includes receiving an indication from an ingress node of a content object entering a network, the content object associated with a new delivery flow through the network. An egress node in the network for the content object and a size of the content object are identified. A backlog and bandwidth for the new delivery flow is determined based in part on the size of the content object. Backlogs and bandwidths for existing delivery flows in the network are determined. A set of candidate paths in the network for the new delivery flow from the ingress node to the egress node is determined. For each candidate path, a total response time is estimated for completion of all delivery flows for each candidate path based on the backlog and bandwidth. The candidate path having the lowest total response time is selected for the new delivery flow.
US09806980B2

Methods, systems, and computer readable media for precise measurement of switching latency of packet switching devices are disclosed. One method includes steps implemented in a network equipment test device including at least one processor. The method includes transmitting frames to a device under test. The method further includes receiving one of the transmitted frames from the device under test. The method further includes determining a measured latency of the device under test based on a difference between a time that the one frame was transmitted to the device under test and a time that the one frame was received from the device under test. The method further includes determining an indication of backlog latency of the device under test caused by the device under test inserting a virtual lane marker in traffic transmitted to the network equipment and reporting the indication of the backlog latency.
US09806978B2

Replicated instances in a database environment provide for automatic failover and recovery. A monitoring component can obtain a lease enabling the component to periodically communicate with, and monitor, one or more data instances in the data environment, where the data instance can be a replicated instance including a primary and a secondary replica. For a large number of instances, the data environment can be partitioned such that each monitoring component can be assigned a partition of the workload. In the event of a failure of a monitoring component, the instances can be repartitioned and the remaining monitoring components can be assigned to the new partitions to substantially evenly distribute the workload.
US09806974B2

Information describing a rule to be applied to a traffic stream is received at an edge network device. The traffic stream is received at the edge network device. A preliminary data analysis of the traffic stream is performed at the edge network device in accordance with the rule. A determination is made that further analysis of the traffic stream should be performed from a result of the preliminary analysis. The traffic stream data is sent to another network device for further analysis.
US09806965B2

The embodiments presented herein provide an automated process for provisioning a user in a communication system. A session manager, which can be a server in the communication system that provides call connection and routing, may receive registration request from communication device (e.g. a cellular telephone, an IP-enabled phone, etc.). The session manager may determine one or more characteristics about the communication device and/or determine a load on one or more other session managers in a cluster of session managers. Based on both the communication device characteristics and/or the loads on the two or more session managers, the session manager can determine a set of session managers, which may include a primary session manager and a secondary session manager, which can manage the user data for the communication device. This session manager set information may then be sent to the communication device and to other session managers in the cluster. The set of session managers may then manage the user data for the communication device.
US09806961B2

A method and Subscription Service Host Server that support a presence service receives multiple subscription requests associated with multiple of subscribers, wherein each subscription request of the multiple subscription requests comprises a request to subscribe to presence information of a status publication source. In response to receiving the multiple subscription requests, a subscription is created for each subscriber of the multiple subscribers. A system condition is monitored and, based on the monitored system condition, a determination is made to suspend a subscription of a subscriber of the multiple subscribers. The subscription of the subscriber is placed into a suspended state to produce a suspended subscription, wherein the Server suspends the subscription without receiving, from the subscriber, a request to suspend the subscription. Subsequent to placing the subscription into a suspended state, a determination is made to one of reactivate and terminate the suspended subscription.
US09806953B2

In a content delivery network, a metrics manager processes network topology information from channel measurements collected from at least one of a digi-node field and a client field, and distributes data signals to a selected edge-server set for storage and delivery to client devices. A parent server selects the edge-server set by employing an algorithm that constructs a trellis having a number of states at least equal to a number of edge servers in the edge-server set, wherein each state comprises a plurality of nodes, each node corresponding to one of a plurality of candidate edge servers. A trellis-exploration algorithm provides interconnects between each node of a first state to each of a plurality of nodes in a next state, and for each node in a state, selects a path corresponding to a best performance metric that connects to a node in a previous state, wherein each performance metric comprises the network topology information.
US09806952B2

A system includes a processor of a first node, which is one of a plurality of nodes governed by a group policy. The processor is operable to transmit, using an interface, a first request to receive information associated with the plurality of nodes and receive, using the interface, sets of configuration information associated with the plurality of nodes after a change has occurred regarding the plurality of nodes. The processor is further operable to compare the sets of configuration information associated with the plurality of nodes to the configuration information associated with the first node and determine a difference. In response, the processor is operable to determine, based on the group policy, to configure the first node. The processor is additionally operable to determine a second node that stores a set of files to configure the first node and configure the first node using the set of files.
US09806931B2

A method for transmission of a signal simultaneously including a first stream of binary data and one or more other streams of binary data, the method including, in the following order: dynamic distribution of bits of the data streams between coders, with one coder per data stream; coding the distributed bits using the coders; dynamic distribution of the coded bits between hierarchical levels of a modulator; and hierarchical modulation using the modulator.
US09806928B2

The present disclosure generally relates to a wireless communication system that provides lower peak to average power ratio (PAPR). In particular, the present disclosure pertains to communication systems and methods for achieving low peak to average power ratio (PAPR) for transmitted symbols of wireless devices. In an aspect, the present disclosure relates to transmitter of a communication system, wherein the transmitter can include a source encoding module that is configured to generate source coded symbols from information to be transmitted by the transmitter, a preset values based multiplication module that is configured to multiply M symbols from the generated source coded symbols with M preset values to generate a first set of multiplied samples, and an N-point IDFT module that is configured to process the first set of multiplied samples to obtain a first set of inverse discrete Fourier transform (IDFT) samples for onward transmission to a receiver.
US09806926B2

A multistage beamforming circuit includes a data unit that implements a frequency domain beamforming stage and a remote radio head that implements a time-domain broadband beamforming stage. The data unit implements the frequency domain beamforming stage by converting K received data streams into M precoding output streams in a frequency-domain. The data unit is configured to transform the M output streams to M OFDM time-domain signals. The remote radio head, or integrated radio unit is configured to implement a time-domain broadband beamforming stage by converting the M OFDM time-domain signals into N transmit streams of time-domain samples. The remote radio head, or integrated radio unit includes a transmit antenna array configured to transmit the N transmit streams that together form broadcast beams and user-specific beams. The antenna array includes a plurality of physical antennas. The number N of transmit streams is greater than the number M of precoding output streams.
US09806913B1

Embodiments herein provide a method of estimating channel states of a plurality of user equipments (UEs) in a single instance. The method includes receiving pilot samples from the plurality of UEs. The method includes selecting a predetermined number of tones, wherein the channel associated with each UE across the selected pre-determined number of tones is same. The method includes collecting the received pilot samples from each pilot symbol and stacking the received pilot samples as a vector. Further, the method includes constructing a matrix. The matrix includes known pilot values used by each UE. Furthermore, the method includes estimating channel states of the plurality of UEs by applying a filter on the vector formed from the received pilot samples. The number of channel states to be estimated is reduced by selecting the pre-determined number of tones.
US09806909B2

The present invention discloses a data switching apparatus and system, where the data switching apparatus includes: an optical-to-electrical conversion unit, an identification unit, an electrical switching unit, an electrical-to-optical conversion unit, an optical switching control unit, and an optical switching unit. The optical-to-electrical conversion unit is configured to perform optical-to-electrical conversion on a first optical data packet and an optical label, where the optical label carries switching information of a second optical data packet, and the first optical data packet and the second optical data packet are respectively to-be-switched data packets that need to use electrical packet switching and optical packet switching. The identification unit is configured to identify whether an electrical signal output by the optical-to-electrical conversion unit is from the optical label or the first optical data packet.
US09806906B2

Methods and techniques for flooding packets on a per-virtual-network basis are described. Some embodiments provide a method (e.g., a switch) which determines an internal virtual network identifier based on one or more fields in a packet's header. Next, the method performs a forwarding lookup operation based on the internal virtual network identifier. If the forwarding lookup operation succeeds, the method can process and forward the packet accordingly. However, if the forwarding lookup operation fails, the method can determine a set of egress ports based on the internal virtual network identifier. Next, for each egress port in the set of egress ports, the method can flood the packet if a virtual network identifier in the packet's header is associated with the egress port. Flooding packets on a per-virtual-network basis can substantially reduce the amount of resources required to flood the packet when a forwarding lookup operation fails.
US09806900B2

In various embodiments, techniques are provided for utilizing a WPAN (e.g., BLE) and an in-home LAN (e.g., Wi-Fi network) together to provision and/or configure hardware elements of a home automation system. In one embodiment, a first WPAN-discoverable hardware element (e.g., a host controller) of the home automation system advertises its presence on a WPAN. The first WPAN-discoverable hardware element receives user-provided network credentials from a mobile app, which are used to configure the first WPAN-discoverable hardware element on the in-home LAN, and which are stored in a storage device of the first WPAN-discoverable hardware element. To provision a second WPAN-discoverable hardware element (e.g., a device) of the home automation system on the in-home LAN, the first WPAN-discoverable hardware element transfers the network credentials back to the mobile app via the in-home LAN, and causes the mobile app to forward the network credentials via the WPAN to the second hardware element.
US09806896B2

A method of retransmitting a multicast message through a unicast channel in a virtual distributed storage system comprising a cluster of nodes that includes a master node and a set of agent nodes is provided. Each node maintains a copy of a directory of the virtual distributed storage system. The master node multicasts messages to the agent node through a multicast channel to update the directory. The method determines that a particular message to update the directory exceeds a maximum size limit for transmit to the agent nodes through the multicast channel. The method multicasts a retransmission trigger message from the master node to each agent node. The method receives a retransmission request message at the master node from each of the agent nodes through a unicast channel. The method sends the particular message to update the directory from the master node to each agent node through the unicast channel.
US09806886B2

A method for providing service plane encryption in IP/MPLS and GRE networks is disclosed. The method for providing service plane encryption in IP/MPLS and GRE networks includes receiving a first Security Parameter Index with associated first encryption key and associated first authentication key at a first network element supporting the first Service Distribution Point; receiving an instruction at the first network element to encrypt data entering the first Service Distribution point with the first encryption key; receiving an instruction at the first network element to associate a data communication service provided at the first network element to the first Service Distribution Point; providing an encryption label; and providing data associated with the first communication service to the first Service Distribution Point for transmission to the second Service Distribution Point. The method for providing service plane encryption in IP/MPLS and GRE networks provides encryption advantages over systems known in the art by providing capability for selectively encrypting services connected via a data tunnel.
US09806881B2

A cryptographic processor is described comprising a processing circuit configured to perform a round function of an iterated cryptographic algorithm, a controller configured to control the processing circuit to apply a plurality of iterations of the round function on a message to process the message in accordance with the iterated cryptographic algorithm and a transformation circuit configured to transform the input of a second iteration of the round function following a first iteration of the round function of the plurality of iterations and to supply the transformed input as input to the second iteration wherein the transformation circuit is implemented using a circuit camouflage technique.
US09806873B2

The present invention relates to a method and apparatus for controlling discontinuous reception (DRX) in a mobile communication system. The method for controlling the DRX of a terminal in a mobile communication system includes the steps of: receiving DRX-setting information from a base station; determining whether or not a first condition is satisfied, the first condition being that a current subframe exists between a first time point when receiving the DRX-setting information and a second time point when an event triggering the application of a short DRX cycle occurs; and applying a preset DRX cycle when the first condition is satisfied.
US09806864B2

Methods and apparatus are provided for transmitting a reference signal by a base station in a mobile communication system. The method includes generating, at the base station, information for a non zero transmission power reference signal including at least one resource element; generating, at the base station, bitmap information indicating a zero transmission power reference signal; and transmitting, at the base station, the information for the non zero transmission power reference signal and the bitmap information to a terminal.
US09806863B2

A mobile station device transmits channel quality indicators for a plurality of system bands, wherein each of the plurality of system bands includes a plurality of subbands comprising a set of contiguous resource blocks, and wherein each of the channel quality indicators is derived to satisfy a condition assuming a subband of the plurality of subbands, and wherein the number of the resource blocks within the subband is based on a frequency bandwidth of a system band of the plurality of system bands and the system band includes the subband.
US09806852B2

Disclosed are a broadcast signal transmitter, a broadcast signal receiver, and a method for transceiving a broadcast signal in the broadcast signal transmitter/receiver. A method for transmitting a broadcast signal comprises the following steps: signaling in-band signaling information to at least one of a service component physical layer pipe (PLP) including at least one service component of a broadcast service, a first information PLP including first service information applied to one broadcast service and a second information PLP including second service information applied commonly to a variety of broadcast services; performing the FEC encoding on data included in each PLP; performing time-interleaving on the FEC encoded data; generating a transmission frame including the time-interleaved data; and modulating the transmission frame and transmitting a broadcast signal including the modulated transmission frame.
US09806839B2

Disclosed herein are methods, structures, and devices for optical communications systems operating through turbulent media. More specifically, a spatial division multiplexing photonic integrated circuit is used in conjunction with digital signal processing systems to mitigate the effects of the turbulent media.
US09806832B2

Systems and methods of gathering, processing, and distributing information of a sporting event over a wireless network covering the sporting event, including a first portable device carried by a spotter of the sporting event to acquire global positioning system (GPS) data corresponding to the first portable device, to receive input data regarding status of the sporting event from the spotter, and to transmit the GPS and input data over the network, and a second portable device carried by a patron of the sporting event to receive the transmitted data, and to selectively display graphical representations of the transmitted data according to an input from the patron.
US09806829B2

A channel calibration apparatus includes a detection module, configured to detect self-loopback responses, transmission responses, and receiving responses of a to-be-calibrated antenna and a reference antenna. The apparatus also includes a processing module, configured to determine, according to the transmission responses, and the receiving responses of the to-be-calibrated antenna and the reference antenna, and according to transport channel responses, transmission responses and receive channel responses that are of the to-be-calibrated antenna and the reference antenna and obtained after processing of transmit channel responses, and then determine a transmit channel compensation response and a receive channel compensation response that are of the to-be-calibrated antenna. The processing module is also configured to make compensation for a transmit channel of the to-be-calibrated antenna according to the transmit channel compensation response, and make compensation for a receive channel of the to-be-calibrated antenna according to the receive channel compensation response.
US09806828B2

A test system for monitoring the performance of a radio frequency signal generator is introduced. The system operates to predict approaching or imminent failure of the radio frequency generator. The system includes a directional coupler, a first detector, a second detector, and a processor to collect, process, and analyze data from the radio frequency generator under test.
US09806821B2

Multilevel optical intensity modulation high in accuracy is performed using electro-absorption optical modulators. There is provided a plurality of EA modulators connected in series in a path of an optical signal from a light source, and a multilevel-coded modulated optical signal is generated by modulating an intensity of an input optical signal from the light source based on a modulation signal using the EA modulators. Each of the EA modulators is switched between an ON state and an OFF state of optical absorption in accordance with the modulation signal. Regarding an extinction ratio of the ON state to the OFF state in each of the EA modulators, the EA modulators have respective values difference from each other, and are arranged in ascending order of the extinction ratio from the light source side.
US09806815B2

There is provided an optical source. The optical source comprises a reflective optical amplifier configured to generate an optical signal, the optical signal comprising an amplified spontaneous light emission having a plurality of light modes each having a respective wavelength. The optical source further comprises a reflective mirror, spaced from the reflective optical amplifier, and arranged to receive the optical signal and to rotate a polarization of each light mode in the received optical signal, to form a further optical signal. The optical source further comprises an optical power splitter arranged to receive the further optical signal and to split the further optical signal into a first optical signal which is directed to the reflective optical amplifier for amplification thereby, and a second optical signal. The optical source further comprises an output arranged to output the second optical signal. There is also provided a communications network optical apparatus and a communications network base station.
US09806810B2

Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.
US09806797B2

A system, and related methods and devices, is disclosed for increasing an output power of a frequency band in a distributed antenna system that includes at least one RXU module that is operatively coupled to at least one RAU module. A first group of the plurality of channels within a first frequency band may be allocated to the RAU module, and a second group of the plurality of the channels within the first frequency band may be allocated to the RXU module. The at least one RAU module may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band, and the at least one RXU module may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased.
US09806791B2

A method, wireless device and computer program product for expanding the coverage of a cellular network. A wireless device (e.g., cellular telephone) is able to communicate with a base station in a cell of the cellular network over a non-cellular interface via another wireless device in a cell through the use of multi-hopping. A wireless device may request permission to communicate with the base station over a non-cellular interface via hopping off another wireless device when its signal strength is below a threshold. Alternatively, a wireless device may receive a request to communicate with the base station over a non-cellular interface via hopping off the wireless device that sent the request when that wireless device has excess capacity in its bandwidth with the base station.
US09806789B2

An apparatus and method for full-duplex millimeter wave mobile wireless communication are provided. The apparatus includes a Spatial Division Duple (SDD) mobile communication system using millimeter waves, the SDD mobile communication system including a first wireless terminal having a first transmit antenna array having a plurality of first transmit antennas for transmitting a spatially beamformed first transmit beam, and a first receive antenna array having a plurality of first receive antennas for forming a spatially beamformed first receive beam and a second wireless terminal including a second transmit antenna array having a plurality of second transmit antennas for transmitting a spatially beamformed second transmit beam directed towards a receive beam of the first wireless terminal, and a second receive antenna array having a plurality of second receive antennas for forming a spatially beamformed second receive beam directed toward the transmit beam of the first terminal.
US09806785B2

Spatial multiplexing and transmit diversity can improve the capacity of a wireless communication system. The system and method adapts communication schemes for communication systems with multiple antennas utilizing at least two transmission modes. The at least two transmission modes can, but are not necessarily, used for uplink communications. The two transmission modes may be chosen from the group consisting of a single antenna mode, a diversity mode a spatial multiplexed mode and a mixed diversity and spatial multiplexed mode. The at least two transmission modes may involve adaptation among multiple transmitters. At least one receiver may indicate a transmission mode to be used by a transmitter for a subsequent transmission. A transmitter may determine a transmission mode to be used for a subsequent transmission. The transmission mode can be based on channel sounding.
US09806783B2

Provided are a method and apparatus for performing beamforming training in a wireless local area network. The apparatus receives a plurality of beacon frames for sector sweep in a beacon transmission interval (BTI) from an access point (AP). At least one beacon frame of the plurality of beacon frames includes overload information which indicates an overload state. The apparatus performs a random backoff on a plurality of channels during association-beamforming training (A-BFT) consequent to the BTI based on the overload information.
US09806780B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Provided are a method and user equipment for sending feedback information to a base station. The method includes receiving a Channel Status Indication Reference Signal (CSI-RS) from the base station; generating feedback information on a basis of the received CSI-RS; and transmitting the generated feedback information to the base station, wherein generating feedback information includes selecting a precoding matrix for each antenna port group of the base station and selecting an additional precoding matrix on a basis of a relationship between the antenna port groups of the base station.
US09806779B2

The present invention relates to a method for transmitting, by a base station, a downlink signal using a plurality of transmission antennas comprises the steps of: applying a precoding matrix indicated by the PMI, received from a terminal, in a codebook to a plurality of layers, and transmitting the precoded signal to the terminal through a plurality of transmission antennas. Among precoding matrices included in the codebook, a precoding matrix for even number transmission layers can be a 2×2 matrix containing four matrices (W1s), the matrix (W1) having rows of a number of transmission antennas and columns of half the number of transmission layers, the first and second columns of the first row in the 2×2 matrix being multiplied by 1, the first column of the second row being multiplied by coefficient “a” of a phase, and the first column of the second row being multiplied by “−a”.
US09806773B2

An apparatus for a multiple-input multiple-output (MIMO) architecture is disclosed. The apparatus includes a first splitter-combiner (S-C) having a first transmission line port, a first transmit (TX) port, and a first receive (RX) port. Also included is a first N-plexer having a first power amplifier (PA) input, a first RX output, and a first antenna output for coupling to a first antenna. A first PA is coupled between the first TX port and the PA input, wherein the first RX output is coupled to the first RX port.
US09806754B1

Cases, devices, and methods for protecting and holding portable handheld devices, such as cell phones and smart phones, in separate protective cases having outwardly extending resilient bumper corner eye lit rings which cushion the case and function as bumpers when the portable electronics device are dropped. The outwardly extending bumpers/eye lit rings can also support lanyards and keychain rings, and the like, so that the cases with portable electronics devices can be easily and safely held in one's finger, about their wrist, or on their neck. A central ring can be formed from an upper middle portion of the case for allowing the forefinger of a user to be inserted therein with the back of the hand supporting the case, and the lanyard wrapped about the user's wrist. The novel cases can also be used to safely protect other types of portable electronic devices, such as tablets and laptop computers, and the like, in similar manners. Portable electronic device housings can be initially manufactured and built with the outwardly extending resilient rings offering safe protection from being dropped and for being held, carried or worn.
US09806751B2

A handheld electronic device may be provided that contains a conductive housing and other conductive elements. Transceiver circuitry, such as radio frequency (RF) transceiver circuitry configured to transmit and receive RF signals, may be connected to the resonating elements by transmission lines such as coaxial cables. The electronic device may have an integrated touch screen display in which a user can control the device by interacting directly with the display.
US09806749B2

A tray mechanism for a device housing includes a tray bed having a planar surface with first and second opposing sides that form a boundary around the planar surface, wherein the first opposing sides include a front side and a back side, wherein the front side is configured with dimensions for closing an opening of a cavity within the device housing, and wherein the second opposing sides are configured for a slideable attachment within the cavity of the device housing. The tray mechanism further includes a lever positioned on the planar surface of the tray bed and a hinge mechanism that pivotally connects the lever to the planar surface of the tray bed. A method for operating the tray mechanism includes a convex side of the lever rolling against the device housing as the lever rotates to eject the tray bed pivotally connected to lever from the device housing.
US09806748B2

The transponder comprises an antenna and a receiver circuit (2) for receiving RF signals, this receiver circuit is implemented with a control mechanism to activate it at least periodically in a listening mode. This receiver circuit is comprises a decoding circuit (4), formed at least by a demodulator (8) and a decoder (10), and a wake-up circuit (14B) to analyze received RF signals in the listening mode and arranged for controlling the activation of the decoding circuit in this listening mode. The wake-up circuit comprises a frequency discriminator (17) and a digital modulation or preamble detector (18) downstream from a field clock generator (28). The wake-up circuit receives as entry an alternating signal branched from the signal chain through the receiver circuit upstream from the demodulator and it activates the decoding circuit only when a modulation or a preamble is detected in a received RF signal by the digital modulation or preamble detector.
US09806742B2

In a transmitting device, in interchanging to interchange a code bit of an LDPC code in which a code length is 16200 bits and an encoding rate is 7/15 with a symbol bit of a symbol corresponding to any of 8 signal points defined by 8PSK, when 3 bits of code bits stored in three units of storages having a storage capacity of 16200/3 bits and read bit by bit from the units of storages are allocated to one symbol, a bit b0, a bit b1, and a bit b2 are interchanged with a bit y1, a bit y0, and a bit y2, respectively. A position of the interchanged code bit obtained from data transmitted from the transmitting device is returned to an original position. The present technology is applicable to a case of transmitting data using an LDPC code, for example.
US09806735B2

This disclosure describes techniques for transferring data from an analog-to-digital converter (ADC) to a host device. The techniques may determine whether an ADC is operating in a quiet conversion time period, and selectively deactivate a digital data output of the ADC when the ADC is operating in the quiet conversion time period. This may allow an ADC to transfer data during both the conversion and acquisition phases of the ADC (rather than just during the acquisition phase), thereby increasing the data throughput of the ADC for a given transfer clock speed. The techniques may further allow data to be transferred during the conversion phase of an ADC without requiring a host device to be aware of the quiet conversion time period requirements of the ADC. In this way, the data throughput of an ADC data transfer may be increased with relatively little additional complexity added to a host device.
US09806729B1

Systems and techniques relating to a digital-to-analog converter (DAC) are described. A described DAC cell includes a differential switch pair coupled with a cross-coupled switch pair. Gate terminals of the differential switch pair are arranged to respectively receive an input signal to the cell and an inverted version of the input signal to respectively drive the gate terminals of the differential switch pair. Gate terminals of the cross-coupled switch pair are arranged to respectively receive the input signal and the inverted version of the input signal to respectively drive the gate terminals of the cross-coupled switch pair. The cross-coupled switch pair is configured to reduce or eliminate net differential transient current between switch output terminals of the differential switch pair. A current-to-voltage converter coupled with the switch output terminals of the differential switch pair generates a voltage that forms at least a portion of an output of the digital-to-analog converter.
US09806724B1

Various aspects of this disclosure describe switched-capacitor circuits in a PLL. Examples include routing current from a first current source through a capacitor to ground during a first clock phase, routing current from a second current source through the capacitor to ground during a second clock phase, and transferring charge on the capacitor to a loop filter capacitor during a third clock phase. The first current source may generate current responsive to UP error samples from a phase/frequency detector (PFD), and the second current source generates current responsive to DN error samples from the PFD.
US09806722B2

The present invention is directed to signal processing system and electrical circuits. According to various embodiments, a DLL system includes a delay line provides multiple output signals associated with different clock phases. The delay line may be adjusted using a pair of bias voltages. A phase detector systems generates the bias voltages using the multiple output signals from the delay line. The multiple output signals include signals associated with the first phase, the last phase, and two adjacent phases. There are other embodiments as well.
US09806720B1

An inverter based on a compound semiconductor uses a depletion mode transistor as the pull-up device, and a current source to bias the pull-up device. The current source is electrically coupled to a source terminal of the pull-up device. As a result, the current source continues to conduct current through the pull-up device, whether the inverter output is high or low, to ensure rapid response of the inverter.
US09806712B2

An electronic device for gesture-based lighting control is described. The electronic device includes a touch sensor that detects a gesture input. The electronic device also includes a lighting operation determination module that determines a lighting operation based on the gesture input. The electronic device further includes a lighting operation execution module that executes the lighting operation.
US09806710B2

A voltage-controlled magnetic based device is described that includes a magnetic insulator; a topological insulator adjacent the magnetic insulator; and magnetic dopants within the topological insulator. The magnetic dopants are located within an edge region of the topological insulator to inhibit charge current flow in the topological insulator during a switching operation using an applied electric field generating by applying a switching voltage across two electrodes at opposite sides of the topological insulator. Power dissipation due to carrier-based currents can be avoided or at least minimized by the magnetic dopants at the edges of the topological insulator.
US09806705B2

A power supply unit for use with thermostats or other like devices requiring power. A power supply unit may be designed to keep electromagnetic interference emissions at a minimum, particularly at a level that does not violate governmental regulations. A unit may be designed so that there is enough power for a triggering a switch at about a cross over point of a waveform of input power to the unit. Power for triggering may come from a storage source rather than line power to reduce emissions on the power line. Power for the storage source may be provided with power stealing. Power stealing may require switching transistors which can generate emissions. Gate signals to the transistors may be especially shaped to keep emissions from transistor switching at a minimum.
US09806704B2

The present invention relates to the technical field of printing in particular, to a frequency multiplication method and device, for solving the problem of poor quality of a printed image. One method comprises: for two adjacent pulse signals output from an encoder, determining a first kind of pulse signals and a second kind of pulse signals to be inserted between the two adjacent pulse signals according to a time interval between the two adjacent pulse signals and a frequency multiplication value corresponding to a longitudinal resolution; determining a period of the first kind of pulse signals to be inserted between the two adjacent pulse signals, and determining a period of the second kind of pulse signals to be inserted between the two adjacent pulse signals; and performing frequency multiplication processing on the two adjacent pulse signals. The embodiments of the invention further improve the printing quality of images.
US09806695B2

An integrated circuit device includes a clock gating circuit, which is configured to generate a first plurality of clocks in response to a first reference clock at a first frequency and a plurality of operation enable signals. A plurality of functional circuits are provided, which are responsive to respective ones of the first plurality of clocks. The plurality of functional circuits is configured to generate respective ones of the plurality of operation enable signals, with each of the plurality of operation enable signals having a first logic state that enables a respective clock within said clock gating circuit and a second logic state that disables the respective clock within said clock gating circuit.
US09806677B2

An amplifier (100) adapted for noise suppression comprises a first input (102) for receiving a first input signal and a second input (104) for receiving a second input signal, the first and second input signals constituting a differential pair. A first output (106) delivers a first output signal and a second output (108) delivers a second output signal, the first and second output signals constituting a differential pair. A first transistor (MCG1) has a first drain (110) coupled to the first output (106) such that all signal current, except parasitic losses, flowing through the first drain (110) flows through the first output (106), and the first transistor (MCG1) further having a first source (112) coupled to the first input (102). A second transistor (MCS1) has a second gate (116) coupled to the first input (102), a second drain (118) coupled to the second output (108) such that all signal current, except parasitic losses, flowing through the second drain (118) flows through the second output (108), and the second transistor (MCS1) further having a second source (120) coupled to a first voltage rail (122). A third transistor (MCS2) has a third gate (124) coupled to the second input (104), a third drain (126) coupled to the first output (106) such that all signal current, except parasitic losses, flowing through the third drain (126) flows through the first output (106), and the third transistor (MCS2) further having a third source (128) coupled to the first voltage rail (122). A fourth transistor (MCG2) has a fourth drain (130) coupled to the second output (108) such that all signal current, except parasitic losses, flowing through the fourth drain (130) flows through the second output (108), and the fourth transistor (MCG2) further having a fourth source (132) coupled to the second input (104). A first load (ZL1) is coupled between the first output (106) and a second voltage rail (136). A second load (ZL2) is coupled between the second output (108) and the second voltage rail (136). A first inductive element (L1) is coupled between the first input (102) and a third voltage rail (138), and a second inductive element (L2) is coupled between the second input (104) and the third voltage rail (138). Transconductance of the first transistor (MCG1) is substantially equal to transconductance of the fourth transistor (MCG2), within ±5%, and transconductance of the second transistor (MCS1) is substantially equal to transconductance of the third transistor (MCS2), within ±5%.
US09806671B2

According to one embodiment, a solar cell module includes: a casing including a wall; a box made of a resin and attached to the casing, the box including a terminal accommodating part; a cable configured to connect an external part, an end part of the cable introduced to the box; and a terminal fitting, accommodated in the terminal accommodating part, the terminal fitting connected to the cable and an output conductor, wherein: the wall is formed with a first opening for attaching the box from an outer surface side; the terminal accommodating part is formed with a second opening at a position opposed to the wall; and the second opening faces an inner part of the casing through the first opening when the box is attached to the casing.
US09806667B2

A system for mounting a solar panel(s) may include a panel mounting bracket(s) having a base to be positioned on a building and a vertical extension including spaced apart vertical sidewalls extending vertically upward from the base and defining a cavity therebetween with a cross-support member extending laterally between the vertical sidewalls across the cavity. An adjustable height extension device is also provided which may include a lower portion carried within the cavity of the vertical extension and vertically slidable within the cavity, an upper portion carried by the lower portion to be connected with the solar panel(s), and a vertical height adjustment member including a head carried by the upper portion and a shaft threadably received by the cross support member to cause the lower portion to slide vertically within the cavity to adjust a vertical height of the upper portion as the vertical height adjustment member is rotated.
US09806661B2

A control device for an on-vehicle electric compressor controls and drives an electric motor arranged in the on-vehicle electric compressor. The control device includes a temperature acquisition unit, a current detector, a threshold current value setting unit, and a motor current controller. The temperature acquisition unit acquires a temperature of the control device. The current detector detects a motor current, which is current that flows through the electric motor. The threshold current value setting unit sets a threshold current value in accordance with the temperature of the control device acquired by the temperature acquisition unit. The motor current controller controls the motor current based on a detection result of the current detector so that the motor current becomes less than or equal to the threshold current value.
US09806660B1

A control system for a permanent split capacitor (PSC) motor is provided herein. The control system includes a motor drive circuit configured to condition AC input voltage from an AC voltage source to an output voltage for operating the PSC motor at a variable speed. The control system also includes a switch device configured to couple the AC input voltage from the AC voltage source directly to the PSC motor for operating the PSC motor at a fixed speed.
US09806655B1

The invention provides a signal generating method for accurately controlling a motor, the method comprises the steps of generating a period compensation signal and a duration compensation signal, can generate a control signal which is more in conformity with the actual vibration condition of the motor, so that the motor can be controlled more accurately.
US09806654B2

Disclosed herein are a motor driving apparatus and a home appliance including the same. The motor driving apparatus includes a direct current (DC) link capacitor, an inverter, a DC link voltage detector, and a controller. The controller controls rheostatic braking to be performed in order to stop the motor, performs bootstrap operation of gate terminals of the upper arm switching elements of the inverter during a first period for starting the motor, and determines whether the motor stops during the first period based on the DC voltage detected by the DC link voltage detector or the output current detected by the output current detector. Accordingly, it is possible to conveniently determine whether the motor stops in the sensorless type motor driving apparatus.
US09806653B2

A control apparatus calculates a total loss change amount that is a power loss change amount of a motor control system including respective power loss change amounts of a converter, an inverter, and a motor of the motor control system. Based on the total loss change amount, during a correction-allowed period that is a period during which square wave control is performed, the control apparatus performs correction to decrease a current output voltage command value of the converter when the current output voltage command value is determined to be greater than the output voltage of the converter at which actual total power loss change amount becomes minimum. When the current output voltage command value is determined to be less than the output voltage of the converter at which actual total power loss change amount becomes minimum, the control apparatus performs correction to increase the current output voltage command value.
US09806648B2

In a motor control device that can perform more appropriate motor control, a switching arm has a first upper FET, a second upper FET, and a lower FET connected in series to one another. A source electrode of the second upper FET and a drain electrode of the lower FET are connected to each other via an intermediate line. The intermediate line is connected to a U-phase motor coil of a motor via a power line. The first upper FET, the second upper FET, and the lower FET are each provided with a parasitic diode that prevents current from flowing from a battery side to a ground side. A phase opening relay FET is provided on the U-phase power line. A parasitic diode of the phase opening relay FET is provided such that a current is not applied from the U-phase motor coil to the U-phase switching arm.
US09806638B2

An apparatus for controlling a grid-connected inverter is disclosed. The apparatus according to an exemplary embodiment of the present disclosure is configured to promote an increase in efficiency of grid-connected inverter system and to improve a current THD by generating a voltage command by changing an offset voltage in response to size of DC-link power voltage and size of apparent power.
US09806622B2

Reduction in size and weight of transformer for grid tie applications is demanded and can be achieved by applying SST to the transformer. However, SST application to PCS for sunlight requires the following: handle a wide variation range of the voltage of solar power generation; reduce switching losses of power devices, DC/DC converter and inverter, in the power circuit to implement high frequency for SST application; increase voltage to the grid voltage; and reduce the dimensions of the high current path prior to step-up. Thus, LLC resonant converter configuration is applied with an inverter placed in the output, and series connected configuration is applied to the inverter. The LLC resonant converter is subject to constant frequency regulation with large output, step-up control with low output, and step-down control with the upper limit voltage according to MPPT voltage from sunlight, in order to achieve drive loss reduction and voltage range handling.
US09806610B2

Noise-shaped frequency hopping power converters are disclosed. An example noise-shaped frequency hopping power converter comprises a shaped number generator having a first output to output a noise-shaped selection signal and a power converter having a first input to receive an input voltage signal, a second input to receive a switching signal that is based on the noise-shaped selection signal, and a second output to output an output voltage signal based on the switching signal.
US09806605B2

Provided is a voltage divider circuit having a small area and good accuracy of a division ratio. Among a plurality of resistors of the voltage divider circuit, each of resistors having a large resistance value, that is, resistors (1/4R, 1/2R, 1R, 9R, 10R) having high required accuracy of ratio includes first unit resistors (5A) that have a first resistance value and are connected in series or connected in parallel to each other, and each of resistors having a small resistance value, that is, resistors (1/16R, 1/8R) having low required accuracy of ratio includes second unit resistors (5B) that have a second resistance value smaller than the first resistance value and are connected in parallel to each other.
US09806604B2

The current invention relates to a power conversion device (10), for supplying a load (11) with a PWM signal through an inductive output filter (105). The power conversion device (10) comprises a power conversion module (101) supplied by a DC input voltage (Vin) and is configured for providing a plurality of output signals (PWM1, . . . , PWMn) having a level amplitude that is a fraction of the input voltage (Vin) level. Each output signal is floating with a bias component equally split in a plurality of steps ranging from a determined lowest fraction level amplitude to a determined highest fraction level amplitude. The power conversion device (10) further comprises a multiplexer (103) receiving as a plurality of inputs the plurality of output signals (PWM1, . . . , PWMn). The multiplexer is configured for outputting one output signal (PWMx) selected from the plurality of inputs, whereby the output signal (PWMx) of the multiplexer (103) is connected to the output filter (105).
US09806599B2

A short-circuit device and a protection method for a submodule for a power converter are disclosed. The submodule includes a bridge circuit having at least one power semiconductor branch extending between a first and a second DC voltage node and at least one controllable power semiconductor switch disposed therein to which a freewheeling diode is connected in anti-parallel, and a capacitor connected in parallel to the bridge circuit. The short-circuit device has at least one selected of the freewheeling diodes anti-parallel to the power semiconductor switches of the bridge circuit, wherein the at least one selected freewheeling diode is manufactured in press pack design and rated such that, when a fault occurs in the submodule, the at least one selected freewheeling diode breaks down due to the fault conditions and provides a durable, stable, low-impedance short circuit path between a first and a second AC voltage connection of the submodule.
US09806597B2

For operating multi-axis drive assemblies more reliably even in a field weakening range, a current conversion device is proposed which includes a voltage-source DC link, a plurality of inverters having each a DC input side connected to the voltage-source DC link and AC output-side terminals for connection to an electric motor, and a control device configured to short-circuit each of the inverters. A measurement device measures an electrical variable at each of the inverters. The control device determines based on the measured electrical variables independently for each of the inverters directly or indirectly whether a particular inverter is feeding energy into the voltage-source DC link, and short-circuits, when this is the case, the particular inverter independently of the other inverters. A corresponding operating method is also disclosed.
US09806587B2

A system and method to reduce core loss in the stator of an electric motor by first preparing laminations of the stator and/or rotor in a water jetting operation, punching or stamping operation, laser cutting operation, or similar manufacturing operation, and then subjecting the laminations to a temperature treatment in a manner such that, upon assembly into a stator and/or rotor of an electric motor and operated within expected parameters, core loss is reduced. The system and method subjects the laminations to a cold bath preferably consisting of liquid nitrogen, after stamping but preferably prior to assembly, and then stacking the laminations together for assembly as a stator and/or rotor of an electric motor.
US09806580B2

A step motor integrates its mounting face and heat sink into the stator design. In particular, mounting holes (typically, four in number) are provided through the stator stack in outer perimeter areas. The stator stack itself becomes the mounting surface, allowing the heat generated from the stator to conduct directly to the mounting plate. The front end cap for holding the rotor in alignment is situated inside of the stator's mounting surface and takes no part in mounting the motor to the mounting surface. The end caps only hold the rotor in proper relation within the stator and contain the bearing assembly for the rotor's axial drive shaft. The perimeter of the stator assembly between the mounting screw holes may have saw-tooth cutouts that define heat-dissipation fins.
US09806577B2

The stator includes a stator core, a plurality of phase windings, a neutral line and a fixing member. The plurality of phase windings are wounded a plurality of times by a predetermined winding method crossing between a plurality of slots. One lead end of each phase winding is supplied with a phase current. The other lead end of each phase winding is a neutral point connecting portion. The other lead end is pulled out from an axially end portion of the stator core. The neutral line connects the neutral point connecting portions of the phase windings of different phases together. The neutral line is separate from the phase windings. The fixing member fixes the neutral line to a yoke portion via an intermediate member. The intermediate member is made of resin.
US09806567B2

A waterproof motor includes: a recess (15) and a shaft tube (11) disposed upright on one side (105) of a base (1); a waterproof cover (2) covering the one side (105) of the base (1) and having a through hole 21 correspondingly enclosing the shaft tube (11) and a protruding portion (22) correspondingly engaging the recess (15), a first space (18) formed between the waterproof cover (2) and the one side (105) of the base (1); a first circuit board (3) disposed inside the first space (18) and having a plurality of sensors (31, 32); a housing (6) having an opening (69) and connected to the other side (106) of the base (1); an insulation plate (7) covering the opening of the housing (6), a second space (68) opposite to the first space (18) formed between the insulation plate (7) and the housing (6).
US09806566B2

A brushless motor comprising: a rotor; a stator core disposed at a radial direction outside of the rotor, and a stator case. The stator core includes an outer ring shaped section, teeth sections projecting out from the outer ring shaped section toward a radial direction inside, and an inner ring shaped section extending from end portions of the teeth sections. Protruding portions are formed at the outer ring shaped section so as to project toward a radial direction outside and so as to be disposed at even intervals around a circumferential direction of the outer ring shaped section. The stator case is integrated together with the stator core by a plurality of plastic deformation portions formed at an outer peripheral portion of the stator case at locations facing towards the protruding portions, and the plastic deformation portions are disposed at even intervals along a circumferential direction of the stator case.
US09806563B2

Systems, methods, and apparatus embodiments for electric power grid and network registration and management of active grid elements. Grid elements are transformed into active grid elements following initial registration of each grid element with the system, preferably through network-based communication between the grid elements and a coordinator, either in coordination with or outside of an IP-based communications network router. A multiplicity of active grid elements function in the grid for supply capacity, supply and/or load curtailment as supply or capacity. Also preferably, messaging is managed through a network by a Coordinator using IP messaging for communication with the grid elements, with the energy management system (EMS), and with the utilities, market participants, and/or grid operators.
US09806561B2

An uninterruptible power supply (UPS system) includes a first converter circuit, a second converter circuit and a DC bus coupled to the first and second converter circuits. The system further includes a control circuit configured to control the first and second converter circuits and to selectively couple the first and second converter circuits to an AC source and a load to provide a first mode of operation wherein the first and second converter circuits respectively operate as a rectifier and an inverter to serve the load from the AC source and a second mode of operation wherein the first and second converter circuits operate as parallel inverters to serve the load from the DC bus. The control circuit may be configured to couple the AC source to the load to bypass the first and second converter circuits in a third mode of operation.
US09806560B2

An uninterruptible power supply (UPS) includes a frame, at least one AC input supported by the frame and configured to be coupled to at least one external power source and at least one AC output supported by the frame and configured to be coupled to at least one external load. The UPS also includes a power conversion circuit supported by the frame and having an output coupled to the at least one AC output, the power conversion circuit configured to selectively provide power from first and second power sources. The UPS further includes first and second static switches supported by the frame and configured to couple and decouple the at least one AC input to and from the at least one AC output and a control circuit supported by the frame and configured to cooperatively control the power conversion circuit and the first and second static switches.
US09806559B2

A reversible buck or boost converter is operable in a buck mode and in a boost mode. In the buck mode, the converter receives a supply voltage via an input terminal and generates a charging current that is supplied to a battery, thereby charging the battery. The supply voltage is also supplied through the converter to an output terminal. In a boost mode, the converter receives power form the battery and generates a supply current and voltage that is output onto the output terminal. The same single current sense resistor is used both to control the charging current in the buck mode and to control a constant current supplied to the output terminal in the boost mode. The output current is controlled to be constant, regardless of changes in the in the battery voltage and changes in the output voltage.
US09806556B2

A wireless charging apparatus includes a transmitter, and first receiver, and a second receiver. The transmitter wirelessly transmits first power from a charger. The first receiver amplifies first current corresponding to the first power to second current. The second receiver wirelessly receives second power corresponding to the second current. The second power charges a battery of an electronic device, and the first and second receivers are coupled to the electronic device.
US09806553B2

A driver circuit is configured using a depletion-mode MOSFET to supply an output voltage across an output capacitor. The driver circuit includes a resistor positioned between two terminals of the MOSFET. In the case of an n-channel depletion-mode MOSFET, the resistor is coupled to the source and the gate. The circuit is a current controlled depletion driver that turns OFF the depletion-mode MOSFET by driving a reverse current through the resistor to establish a negative potential at the gate relative to the source. A Zener diode is coupled between the source of the depletion-mode MOSFET and the output capacitor to establish a voltage differential between the output and the MOSFET source.
US09806552B2

A charge rebalancing integration circuit can help keep an output node of a front-end integration circuit within a specified range, e.g., without requiring resetting of the integration capacitor. The process of monitoring and rebalancing the integration circuit can operate on a much shorter time base than the integration time period, which can allow for multiple charge balancing charge transfer events during the integration time period, and sampling of the integration capacitor once per integration time period, such as at the end of that integration time period. Information about the charge rebalancing can be used to adjust subsequent discrete-time signal processing, such as digitized values of the samples. Improved dynamic range and noise performance is possible. Computed tomography (CT) imaging and other use cases are described, including those with variable integration periods.
US09806548B2

A power supply system includes data circuitry as well as power circuitry to generate DC power for use by a portable electronic device having a rechargeable battery. The DC power, ground and two signaling lines are provided in a power supply connector which detachably mates with an electronic device power input port. In response to a first signal from the electronic device transmitted over one of the signaling lines, the data circuitry provides an analog signal to the electronic device over the other signaling line. The electronic device determines a parameter level, such as a current level, of the analog signal, and based on the determined parameter level controls charging of its battery.
US09806546B2

The present invention concerns a power supply apparatus configured for coupling to an electronic device having a power port integral to the electronic device and a particular hardware profile. The power supply apparatus includes: a housing configured to extend the hardware profile of the electronic device in at least one dimension, a power source integral to the housing, and a power interface extending from the housing and configured to couple with the power port of the electronic device. A securing device integral to the housing is configured to couple the housing to the electronic device. Where the electronic device has a door covering its power port in a closed position and uncovering its port in an open extended position, the housing has a cover receiver for receiving the floor and maintaining the form factor of the electronic device and power supply.
US09806544B2

A charging device receives charge data from a device connected to the charging device. The charge data corresponds to an amount of stored energy in a battery connected to the device. A charge level for the device is determined based on the received charge data. An interface forming part of the device displays the determined charge level such that (i) a visual representation of the charge level is displayed in a first orientation when the charge level is less than a threshold value and (ii) the visual representation of the charge level is displayed in a second orientation when the charge level is greater than or equal to the threshold value.
US09806534B2

A non-contact power feeding apparatus transmits, by at least magnetic coupling, an electric power in a non-contact manner to a power reception coil from a power transmission coil. The transmission coil is electrically connected to an alternating-current power source. The non-contact power feeding apparatus outputs an electric power to a load electrically connected to the power reception coil. The non-contact power feeding apparatus includes a coupling state estimator configured to estimate a coupling state between the power transmission coil and the power reception coil. The non-contact power feeding apparatus also includes an available output power calculator configured to calculate an available output power that can be output to the load, based on a limit value of a circuit element of a power feeding circuit including the power transmission coil and the power reception coil and on the coupling state.
US09806533B2

A power transmitting apparatus for transmitting the power to a power receiving apparatus includes a power transmitting unit configured to wirelessly transmit the power, a receiving unit configured to receive from other power transmitting apparatuses currently transmitting the power the information about the resonance frequencies used for the current power transmission, and a resonance frequency determination unit configured to, based on the resonance frequency information, determine a resonance frequency to be used for power transmission by the power transmitting unit.
US09806527B1

An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output.
US09806526B2

A bi-directional direct current to direct current converter includes a first inductor, a first switch, a first capacitor, a middle voltage point, a second inductor, a second switch, a second capacitor, a third switch and a fourth switch. A direct current voltage supply unit provides the bi-directional direct current to direct current converter with an input direct current voltage. When the third switch is turned on, and the fourth switch is turned on, and the first switch is turned off, and the second switch is turned off, then the first inductor and the second inductor store energy. When the third switch is turned off, and the fourth switch is turned off, and the first switch is turned on, and the second switch is turned on, then the first inductor and the second inductor release energy to the first capacitor and the second capacitor.
US09806522B2

A method for controlled connection of a plurality of on-board power system branches is disclosed, wherein electrical power is exchanged between first and third on-board power system branches if an uncritical supply state is present and electrical power is exchanged between second and the third on-board power system branches if a critical supply state is present in the first or third on-board power system branch. In a critical supply state, the first on-board power system branch is disconnected from the third on-board power system branch by opening a first switching device, and the second on-board power system branch is then connected to the third on-board power system branch via a second switching device. A second actuation device that actuates the second switching device receives a switch state signal from the first actuation device and closes the second switching device only if the received signal signals an open first switching device.
US09806520B2

A current command value in a period from a time when a relay switch is turned on until charging of an inverter capacitor is completed is set to a value smaller than a value corresponding to the smallest one of rated currents of components included in a circuit, and is set to a value smaller than a maximum current value in a safe operating area of a switching element.
US09806518B2

A method of establishing current limits for each of a plurality of device couplers mounted on a trunk of an electrical circuit at distributed physical positions, in which each of said device couplers is capable of servicing one or more spurs connected thereto, and in which said trunk has a total trunk current and a known resistive component, comprising the steps of: a) establishing physical characteristics of the electrical circuit including i) an order in which said device couplers are mounted on said trunk along its length; ii) a load current each device coupler requires to service the one or more spurs connected thereto; and, iii) a voltage drop of each of said sections of trunk caused by the resistive component thereof, which is proportional to a physical length thereof and the combined load currents of each device coupler serviced by that section of trunk; b) calculating a current limit for each device coupler, which current limit is greater than said load current, according to a predetermined tolerance rationale; c) calculating an intermediate trunk current available to each device coupler by deducting from said total trunk current the current limits of each device coupler preceding that device coupler in said order, as well as a consequential reduction in current caused by said voltage drop of each of said sections of trunk preceding that device coupler; and, d) adjusting said current limits so none exceeds the intermediate trunk current available to the corresponding device coupler.
US09806512B2

A protective device protects an LC filter in a vehicle. The vehicle includes a first vehicle-mounted electric device and a second vehicle-mounted electric device. The first vehicle-mounted electric device includes a first power converter. The second vehicle-mounted electric device includes a second power converter and shares a power supply with the first vehicle-mounted electric device. The LC filter is arranged between the first power converter and the power supply. The LC filter is configured such that the resonance frequency band of the LC filter can be changed. The resonance frequency band of the LC filter is changed based on a ripple amount in a current flowing in the LC filter.
US09806509B1

A fire-resistant electrical box assembly includes an outer box assembly having an outer top panel, an outer bottom panel, an outer first side panel, an outer second side panel, an outer back panel, an inner back panel, and a front panel forming an opening substantially covered by a front cover, an inner box assembly having one or more of an inner top panel, an inner bottom panel, an inner first side panel, and an inner second side panel, and an intumescent material between at least a portion of the outer back panel and the inner back panel.
US09806504B2

An adapter with an insertion guide for connection between a porcelain tube and a branch tube is provided at an upper end portion of the branch tube. The adapter with the insertion guide includes an insertion guide portion extending in an axial direction of the branch tube. After inserting a lower end of a central conductor into an insertion portion of an arc-extinguishing chamber, a flange of the porcelain tube is inserted into the adapter with the insertion guide by guidance of the insertion guide portion. Accordingly, in a state where a bushing and the branch tube are self-aligned with each other, a lower end portion of the central conductor is inserted into the insertion portion.
US09806499B2

A spark plug 1 includes a tubular housing 2, a tubular insulator 3 held inside the housing 2, a center electrode 4 held inside the insulator 3 such that a distal end portion 41 protrudes, a ground electrode 5 that forms a spark discharge gap G between it and the center electrode 4, and a standing member 6 that stands distalward from a distal end portion 21 of the housing 2. In at least one of a pair of side surfaces 61 of the standing member 6 which face in a plug circumferential direction, there is formed a guide step portion 62 for guiding the flow of an air-fuel mixture in a combustion chamber of an internal combustion engine to the spark discharge gap G.
US09806490B2

The laser system may include a delay circuit unit, first and second trigger-correction units, and a clock generator. The delay circuit unit may receive a trigger signal, output a first delay signal obtained by delaying the trigger signal by a first delay time, and output a second delay signal obtained by delaying the trigger signal by a second delay time. The first trigger-correction unit may receive the first delay signal and output a first switch signal obtained by delaying the first delay signal by a first correction time. The second trigger-correction unit may receive the second delay signal and output a second switch signal obtained by delaying the second delay signal by a second correction time. The clock generator may generate a clock signal that is common to the delay circuit unit and the first and second trigger-correction units.
US09806485B2

Examples of the present invention include integrated erbium-doped waveguide lasers designed for silicon photonic systems. In some examples, these lasers include laser cavities defined by distributed Bragg reflectors (DBRs) formed in silicon nitride-based waveguides. These DBRs may include grating features defined by wafer-scale immersion lithography, with an upper layer of erbium-doped aluminum oxide deposited as the final step in the fabrication process. The resulting inverted ridge-waveguide yields high optical intensity overlap with the active medium for both the 980 nm pump (89%) and 1.5 μm laser (87%) wavelengths with a pump-laser intensity overlap of over 93%. The output powers can be 5 mW or higher and show lasing at widely-spaced wavelengths within both the C- and L-bands of the erbium gain spectrum (1536, 1561 and 1596 nm).
US09806478B2

An electrical connector comprises a dielectric body having a socket. A plurality of pivotable arms are hinged to the dielectric body. A releasable locking mechanism holds the pivotable arms in a locked position that releases with an outward pulling force exceeding a threshold force. The releasable locking mechanism comprises two or more latch members that are biased by corresponding springs against the corresponding pivotable arms. Each pivotable arm has a protrusion that divides a first region from a second region of the pivotable arm.
US09806469B2

Examples of electrical connectors that incorporate electromagnetic interference (EMI) absorbing materials are described. In one example, an electrical connector includes a first pair of conductors, a second pair of conductors, and electromagnetic interference (EMI) absorbing material at least partially separating the first pair of conductors from the second pair of conductors. Each of the first and second pairs of conductors defines one of a differential pair or a signal conductor/ground pair. The EMI absorbing material may be configured to attenuate, primarily by absorption, an electromagnetic field generated due to transmission of electrical signals via one of the first pair and second pair of conductors to reduce the electromagnetic inference from the electromagnetic field on the other of the first pair and second pair of conductors.
US09806439B2

A coaxial cable connector and a grounding insert extending between an elongated hollow post and a nut interior and providing an electrically conductive path therebetween.
US09806430B2

An antenna system having a transmit assembly with a first set of antenna elements for transmitting signals. Each antenna element in this first set may be disposed from a respective adjacent antenna element by a predetermined azimuthal increment and by a predetermined altitudinal increment. The antenna system further includes a receive assembly having a second set of antenna elements for receiving signals. Each antenna element in this second set may be disposed from a respective adjacent antenna element by a predetermined azimuthal increment and by a predetermined altitudinal increment. The predetermined azimuthal and altitudinal increments of the first set may be substantially similar to the predetermined azimuthal and altitudinal increments, respectively, of the second set.
US09806427B2

A radio wave absorber provided with a radio wave absorbing film formed on a substrate, the radio wave absorber being capable of absorbing radio waves over a broad frequency band and exhibiting superior radio wave absorbing properties even with a radio wave absorbing film thinner than 1 mm. A film forming paste suitable for forming a radio wave absorbing film that is provided in the radio wave absorber. In a radio wave absorber provided with a radio wave absorbing film formed on a substrate, a particular epsilon-type iron oxide is employed in the radio wave absorbing film and relative permittivity of the radio wave absorbing film is set to 6.5 to 65.
US09806424B2

To provide a pressure-resistant explosion-proof container in which a wireless circuit housed inside the pressure-resistant explosion-proof container can transmit and receive a high frequency signal, without installing an antenna outside.A pressure-resistant explosion-proof container includes a container made of metal, a slit functioning as an explosion-proof clearance that is formed by penetrating a wall surface of the container, and a cavity resonator that is provided in the container and in which an antenna is built that transmits and receives a high frequency signal by using the slit as a waveguide.
US09806419B2

An array antenna device includes a substrate, a strip conductor formed on one surface of the substrate, plural loop elements formed on the one surface of the substrate, and a conductor plate formed on the other surface of the substrate. Each of the loop elements has a circumferential length that is approximately equal to one wavelength of a radiated radio wave, and is disposed at such a position as to be coupled with the strip conductor electromagnetically, and the loop elements are arranged alongside the strip conductor at distances that are equal to the one wavelength.
US09806412B2

A variably controlled stagger antenna array architecture is disclosed. The array employs a plurality of driven radiating elements that are spatially arranged having each radiating element or element groups orthogonally movable relative to a main vertical axis. This provides a controlled variation of the antenna array's azimuth radiation pattern without excessive side lobe radiation over full range of settings.
US09806407B2

Safety radio devices are described herein. One method of constructing a safety radio device includes mounting a radio module on a first layer of a circuit board, fabricating an antenna on a second layer of the circuit board, and constructing a safety radio device by connecting the radio module to the antenna through an aperture formed in the second layer of the circuit board.
US09806404B2

A fin-shaped multi-band antenna module, e.g., for vehicles, includes an antenna printed circuit board and a plate arranged thereupon. In a lower region the plate is mechanically connected to the antenna printed circuit board. A first monopole extends in an essentially vertical direction on the plate and is connected to the antenna printed circuit board in a lower region by a feed point. The first monopole is inductively extended in the vertical direction in an upper region of the first monopole in order to enable transmission and reception of electromagnetic waves in a lower telephone frequency range.
US09806401B2

Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and first and second antennas. An electronic device may include a housing. The first antenna may be located at an upper end of the housing and the second antenna may be located at a lower end of the housing. A peripheral conductive member may run around the edges of the housing and may be used in forming the first and second antennas. The radio-frequency transceiver circuitry may have a transmit-receive port and a receive port. Switching circuitry may connect the first antenna to the transmit-receive port and the second antenna to the receiver port or may connect the first antenna to the receive port and the second antenna to the transmit-receive port.
US09806388B2

A battery system capable of cooling overheated battery packs among a plurality battery packs each mounted in a battery case by measuring temperatures of the battery packs is disclosed, and a driving method thereof is provided. In one embodiment, the battery system includes a plurality of battery packs, an air compressor for supplying a compressed cooling air to the plurality of battery packs, a gas dividing unit coupled between the plurality of battery packs and the air compressor and including a plurality of valves, and a controller for controlling opening and closing of each of the plurality of valves according to temperatures of the plurality of battery packs.
US09806384B2

A regulating device for regulating a cooling circuit is described. The regulating device according to the disclosure includes a first regulating stage, wherein the first regulating stage is designed to determine, using one or more input variables, a cooling/heating power of the cooling circuit or a variable proportional thereto. The first regulating stage is also designed to determine a first control deviation. The first regulating stage is also designed to output a controlled variable of the first regulating stage comprising a desired temperature of a coolant or a variable proportional thereto, which is derived from the first control deviation. The regulating device according to the disclosure also includes a second regulating stage, wherein the second regulating stage is positioned in series with the first regulating stage and designed to receive the controlled variable of the first regulating stage as a control output. The second regulating stage is also designed to determine a second control deviation. The second regulating stage is also designed to output a controlled variable of the second regulating stage comprising an abstract signal, which is derived from the second control deviation.
US09806371B2

An anode capable of preventing expansion of an anode active material layer and a battery using it are provided. The anode includes an anode current collector, and an anode active material layer containing silicon (Si) as an element, wherein the anode active material layer therein contains at least one selected from the group consisting of a fluoride of an alkali metal and a fluoride of an alkali earth metal.
US09806370B2

The secondary battery includes an electrode assembly including a first electrode plate and a second electrode plate whereon first and second electrode active materials, and first and second electrode tabs are formed, respectively, and including a separator disposed between the first and second electrode plates while overlapping with the first and second electrode plates; and a planarizing member disposed on at least one of first and second ends that are opposite to each other in a longitudinal direction of the electrode assembly, wherein the planarizing member covers a stepped surface exposed on the at least one of the first and second ends so as to planarize the stepped surface. In the secondary battery, the stepped surface of an end of the electrode assembly is planarized.
US09806368B2

The invention relates to a strip of fuel cell components comprising a plurality of fuel cell components spaced apart in a first direction and a support structure connected to the plurality of fuel cell components. The plurality of fuel cell components comprise a first surface. The support structure comprises two lateral fold regions between adjacent fuel cell components such that the support structure is foldable in order for the first surfaces of the plurality of fuel cell components to face in the same direction when folded.
US09806364B2

A SOFC system for producing a refined carbon dioxide product, electrical power, and a compressed hydrogen product is presented. The system can include a hydrodesulfurization system, a steam reformer, a water-gas shift reactor system, a hydrogen purification system, a hydrogen compression and storage system, a pre-reformer, and a CO2 purification and liquidification system.
US09806363B2

Provided is an apparatus for soft-sensing a fuel cell system. The apparatus includes: a connecting unit detachable from a control unit for being connected to an outside of a stationary fuel cell system; a collecting unit connected to the connecting unit and receiving data of the stationary fuel cell system; a quality variable predicting unit connected to the collecting unit and predicting a quality variable of the stationary fuel cell system based on the received data; and a monitoring unit connected to the quality variable predicting unit and outputting the predicted quality variable. The quality variable predicting unit is configured to predict the quality variable predictable including at least any one of a concentration of carbon monoxide in a reformed gas at a rear end of a fuel converting system, and a concentration of methane in the reformed gas at the rear end of the fuel converting system.
US09806360B2

The present invention relates to a unit cell for a solid-oxide fuel cell and to a solid-oxide fuel cell using same, and, more specifically, relates to: a unit cell for a solid-oxide fuel cell, wherein a fuel charging-and-discharging part and an air charging-and-discharging part are provided perpendicularly to a cathode comprised in the solid-oxide fuel cell; and a solid-oxide fuel cell using same.
US09806358B2

The present invention enables a fuel cell to be stably started by minimizing a lack of air in a gas turbine when starting the fuel cell. This fuel cell system comprises: a gas turbine (11) having a compressor (21) and a combustor (22); a first compressed air supply line (26) that supplies compressed air (A1), which has been compressed by the compressor, to the combustor; a solid oxide fuel cell (SOFC) (13) having an air electrode and a fuel electrode; a second compressed air supply line (31) that supplies partially compressed air (A2), which has been compressed by the compressor, to the air electrode; a blower (33) that is disposed on the second compressed air supply line, and raises the pressure of the compressed air (A2); a circulation booster line (60) connecting the upstream side and downstream side of the blower in the second compressed air supply line; a control valve (61) disposed on the circulation booster line; a control valve (63) disposed between the circulation booster line in the second compressed air supply line and the SOFC; and a control device (62) that closes the control valves and opens the control valves to start the blower when starting the SOFC.
US09806356B2

Systems and methods for improving conditions for anion contaminant removal in a cathode of a PEMFC system are presented. A fuel cell system consistent with certain embodiments may include a cathode compartment having a compressor coupled thereto. The compressor may be configured to receive an input cathode gas via a compressor input and supply the input cathode gas to the cathode compartment via a compressor output. The fuel cell system may further include a cathode gas recirculation value coupled to the cathode compartment configured to receive a cathode exhaust gas output and to selectively provide at least a portion of the cathode exhaust gas output to the compressor input. Consistent with certain embodiments disclosed herein, the compressor may be further configured to supply at least a portion of the cathode exhaust gas output to the cathode compartment via the compressor output.
US09806354B2

To provide a manufacturing method of a membrane electrode assembly which improves the reliability of seal, mechanical strength, and handling ability of a solid polymer type fuel cell. The manufacturing method of a membrane electrode assembly according to the present invention prepares a membrane electrode assembly which differs in size of gas diffusion layers at an anode side and cathode side, provides the outer peripheral edge of the membrane electrode assembly with a resin frame by molding, and, at that time, provides projections or a concave part and convex part at a top mold and bottom mold used for the molding so as to keep to a minimum the penetration of the resin frame material to the gas diffusion layers and/or electrode layers and prevent warping of the outer peripheral edges of the larger gas diffusion layer etc.
US09806351B2

A material for fuel cell separator, wherein a surface layer 6 containing Au and Cr is formed on a surface of a Ti base 2, and an intermediate layer 2a containing Ti, O, Cr, and less than 20 atomic % of Au is present between the Ti base and the surface layer, a thickness of an area containing 65 atomic % or more of Au being 1.5 nm or more, a maximum concentration of Au being 80 atomic % or more, a coating amount of Au being 9000 to 40000 ng/cm2, a ratio represented by (Au coating amount)/(Cr coating amount) being 10 or more, a coating amount of Cr being 200 ng/cm2 or more, and in the intermediate layer having an area containing 10% or more of Ti, 10% or more of O and 20% or more of Cr being 1 nm or more.
US09806343B2

Compositions of discrete carbon nanotubes for improved performance lead acid batteries. Further disclosed is a method to form a lead-acid battery with discrete carbon nanotubes.
US09806341B2

Provided are a positive active material, a positive electrode including the same, and a lithium secondary battery including the positive electrode. The positive active material includes lithium cobalt oxide containing a metal element, and the lithium cobalt oxide containing a metal element has a ratio of a peak intensity of the O3 phase to a peak intensity of the H1-3 phase, IO3/IH1-3, that is greater than 1 in a X-ray diffraction (XRD) analysis spectrum using Cu-Kα radiation. Accordingly, a lithium secondary battery including the positive active material may have improved lifespan characteristics even at a high voltage.
US09806334B2

Irreversible capacity which causes a decrease in the charge and discharge capacity of a power storage device is reduced, and electrochemical decomposition of an electrolyte solution and the like on a surface of an electrode is inhibited. Further, the cycle characteristics of the power storage device is improved by reducing or inhibiting a decomposition reaction of the electrolyte solution and the like occurring as a side reaction in repeated charging and discharging of the power storage device. A power storage device electrode includes a current collector and an active material layer that is over the current collector and includes a binder and an active material. A coating film is provided on at least part of a surface of the active material. The coating film is spongy.
US09806333B2

A secondary battery capable of obtaining superior cycle characteristics and superior swollenness characteristics is provided. The secondary battery includes a cathode and an anode capable of inserting and extracting an electrode reactant; and an electrolyte containing a solvent and an electrolyte salt. The anode has an anode active material layer on an anode current collector. The anode active material layer contains a plurality of crystalline anode active material particles having silicon (Si) as an element. The plurality of anode active material particles contain a spherical particle and a nonspherical particle.
US09806330B2

The present disclosure provides a lithium-rich electrode plate of a lithium-ion battery and a preparation method thereof. The preparation method of the lithium-rich electrode plate of the lithium-ion battery comprises steps of: (1) in a protective gas environment, melting a lithium ingot to obtain a melting lithium; (2) in a vacuum environment, heating and drying ceramic particles to obtain dried and anhydrous ceramic particles; (3) in a protective gas environment, adding the dried and anhydrous ceramic particles into the melting lithium, stirring to make them uniformly mixed to obtain a modified melting lithium; (4) in a protective gas environment, uniformly coating the modified melting lithium on a surface of an electrode plate to be lithium rich to form a lithium-rich layer, which is followed by cooling to room temperature to obtain a lithium-rich electrode plate of a lithium-ion battery. The lithium-rich electrode plate is prepared according to the preparation method.
US09806328B2

Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
US09806319B2

Disclosed herein is a battery module having a plurality of unit cells that can be charged and discharged, the battery module including busbars for electrically interconnecting the unit cells, ring terminals connected to electrical connection portions of the unit cells for measuring voltages of the unit cells, and a busbar mounting member mounted at an outer surface of the battery module corresponding to the electrical connection portions of the unit cells, the busbar mounting member including ring terminal guides for preventing rotation of the ring terminals.
US09806313B2

A coated method for the preparation of a separator comprising multiple layers of glass or glass and ceramic particles for use in an electrochemical cell, an electrochemical cell comprising such a separator and the use of such an electrochemical cell. The method comprises the steps of providing a mixture of an organic polymeric material, glass or glass and ceramic particles and at least one solvent, and preparing a multilayer by phase inversion.
US09806309B2

A battery system, in particular a lithium-ion battery system, comprising a discharge line (AL) with an opening for discharging substances which are produced in the battery system, in particular gases, to the surroundings of the battery system.
US09806308B2

A battery module is provided and includes a plurality of rechargeable batteries and a battery cover, wherein the rechargeable batteries are disposed adjacent to each other, each of the rechargeable batteries has a battery case having a wall portion equipped with an open valve that is constructed so as to open when the inner pressure of the battery case rises up to a threshold value, and the battery cover faces the wall portion. The battery cover has a plurality of cover members provided side by side in a direction toward which the rechargeable batteries are disposed adjacent to each other. The cover members include at least adjacent first and second cover members. The first cover member has a first edge portion and the second cover member has a second edge portion overlapped with the first edge portion.
US09806303B2

Provided is a packaging material for electrochemical cells which has an identification mark that can be recognized from the outside and that is difficult to forge. The packaging material comprises a multilayer film which has a structure formed by laminating a base layer (11), an adhesive layer (13), a metal foil layer (12), an acid-modified polyolefin layer (14), and a heat-sealable layer (15) in this order, wherein the base layer (11) comprises both a oriented polyester film (11b) and a oriented nylon film (11e) with a printed layer (11c) provided on the surface of the oriented polyester film (11b) that faces the oriented nylon film (11e).
US09806294B2

A surface light emitting element includes a light emitting layer that emits light, a first electrode layer that is provided on the side of the light emitting layer from which the light is extracted and allows the light that has been emitted by the light emitting layer to pass through, a second electrode layer that is provided on the side of the light emitting layer from which light is not extracted, a light scattering layer that is provided on the side of the first electrode layer opposite to the side on which the light emitting layer is positioned, and a transparent substrate that is provided on the side of the light scattering layer opposite to the side on which the light emitting layer is positioned, wherein a conductive material in which the real part of a complex dielectric constant is negative is used in the first electrode layer.
US09806290B2

A cracks propagation preventing, polarization film attaches to outer edges of a lower inorganic layer of an organic light emitting diodes display where the display is formed on a flexible substrate having the lower inorganic layer blanket formed thereon. The organic light emitting diodes display further includes a display unit positioned on the inorganic layer and including a plurality of organic light emitting diodes configured to display an image, and a thin film encapsulating layer covering the display unit and joining with edges of the inorganic layer extending beyond the display unit.
US09806281B2

The invention relates to a structure comprising at least two impermeable substrates, at least one of these substrates being transparent, at least one intermediate adhesive film and at least one electronic or optoelectronic organic device between the two substrates, said device comprising a stack of organic layers comprising a photoelectroactive layer, with, on either side of the latter, additional organic layers that facilitate the transport of charge, among which layers mention may be made of a hole transport layer and an electron transport layer, said stack being inserted between two carriers, said stack of organic layers essentially containing materials the glass transition temperature (TgM) of which is such that TgM−Tgf≧130° C., where Tgf is the glass transition temperature of the material from which the intermediate adhesive film is made.
US09806277B2

An organic light emitting display apparatus includes a substrate, an organic layer on the substrate, wherein the organic layer includes a first concave portion and a first convex portion on a surface thereof, a first electrode on the organic layer, wherein the first electrode includes a second concave portion and a second convex portion on a surface thereof, a second electrode on the first electrode, and an emission layer between the first and second electrodes. A vertical distance between the second concave portion and the second convex portion is less than that between the first concave portion and the first convex portion.
US09806275B2

An organic light emitting diode display, including a substrate; an organic light emission display layer on the substrate; and a quantum dot layer on the organic light emission display layer, the substrate representing a color of a first wavelength range, and the quantum dot layer color-shifting the color of the first wavelength range to form a transparent light passing through the quantum dot layer.
US09806272B2

A flexible display and a method of manufacturing the same are disclosed. In one aspect, the method includes forming a sacrificial layer on a support substrate, wherein the sacrificial layer includes a plurality of patterns continuously formed thereon and a plurality of grooves formed between the patterns. The method also includes forming a display unit on the sacrificial layer, dissolving and removing the sacrificial layer with water and separating the display unit from the support substrate.
US09806268B2

Objects are to provide the following: a substance that facilitates hole injection and has high triplet excitation energy; a light-emitting element having high emission efficiency using the substance that facilitates hole injection and has high triplet excitation energy; a light-emitting element having low driving voltage; and a light-emitting device, an electronic device, and a lighting device having low power consumption. Provided is a triazole derivative in which a dibenzothiophen-4-yl or dibenzofuran-4-yl group represented by General Formula (G2) is bonded to any one of Ar1 to Ar3 of a triazole derivative represented by General Formula (G1). In the formulas, A represents oxygen or sulfur, Ar1 to Ar3 separately represent a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and R1 to R7 separately represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
US09806263B2

The invention relates to novel conjugated polymers containing one or more diindeno-thieno[3,2-b]thiophene based polycyclic repeating units, to methods for their preparation and educts or intermediates used therein, to polymer blends, mixtures and formulations containing them, to the use of the polymers, polymer blends, mixtures and formulations as organic semiconductors in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices and organic photodetectors (OPD), and to OE, OPV and OPD devices comprising these polymers, polymer blends, mixtures or formulations.
US09806261B2

Disclosed is an organic light emitting diode (OLED) display comprising a substrate; an organic light emitting element disposed on the substrate; an encapsulation substrate disposed on the organic light emitting element; and an adhesive layer formed on the substrate, covering the organic light emitting element, and bonding the substrate on which the organic light emitting element is formed with the encapsulation substrate.
US09806242B2

An optical lens for an LED includes an upper portion defining a light extraction face, a lower portion and an annular flange between the upper and lower portions. The lower portion has a wall section defining a cavity for receiving the LED therein, and a curved lateral side. A lateral light generated by the LED and running against the curved lateral side has at least a part being refracted or reflected thereby to run through the light extraction face of the optical lens.
US09806241B2

A resin-attached lead frame and a semiconductor device including the resin-attached lead frame. The resin-attached lead frame includes a lead frame main body having a die pad (LED element resting portion) and a lead portion disposed apart from the die pad. The lead frame main body further includes an LED element resting region formed over an area including an upper surface of the die pad and an upper surface of the lead portion. A reflecting resin section surrounds the LED element resting region of the lead frame main body. A vapor-deposited aluminum layer or a sputtered aluminum layer is provided on an upper surface of the LED element resting region of the lead frame main body.
US09806237B2

A method for producing a light-emitting diode includes providing a light-emitting diode chip including a semiconductor body, and applying a luminescence conversion material to an outer area of the semiconductor body by thermal spraying such that at least part of electromagnetic radiation generated during operation of the light-emitting diode impinges on the luminescence conversion material, or providing a radiation-transmissive carrier, applying a luminescence conversion material to an outer area of the carrier by thermal spraying, and arranging the carrier at a radiation exit area of the light-emitting diode chip such that at least part of electromagnetic radiation generated during operation of the light-emitting diode impinges on the luminescence conversion material.
US09806225B2

A method of producing an optoelectronic semiconductor chip includes providing a growth substrate and a semiconductor layer sequence grown on the growth substrate with a main extension plane including a p-conductive layer, an active zone and an n-conductive layer, removing the semiconductor layer sequence in regions to form at least one aperture extending through the p-conductive layer and the active zone into the n-conductive layer of the semiconductor layer sequence, depositing a protective layer on a side of the semiconductor layer sequence facing away from the growth substrate, depositing an aluminum layer containing aluminum across the entire surface on a side of the semiconductor layer sequence facing away from the growth substrate, removing the growth substrate, and forming a mesa by removing the semiconductor layer sequence at the regions of the protective layer, wherein the protective layer is subsequently freely externally accessible at least in places.
US09806213B2

The present application relates to an encapsulant for a PV module, a method of manufacturing the same and a PV module. The encapsulant according to an embodiment of the present application has excellent heat resistance or the like and improved creep physical properties, and thus even when the encapsulant is used under conditions of a high temperature and/or high humidity for a long time, deformation is small and the encapsulant can exhibit excellent adhesive strength. Accordingly, when the encapsulant is applied to a PV module, durability or the like may be improved.
US09806206B2

Grid patterns for concentrator solar cells that increase power output are provided. In one aspect, a top contact for a solar cell is provided that includes: bus connectors and metallic fingers attached to the bus connectors, wherein each of the metallic fingers has a base which is connected to one of the bus connectors or to another one of the metallic fingers such that each of the metallic fingers is attached to one of the bus connectors either directly or indirectly via another one of the metallic fingers, and wherein at least one of the metallic fingers has a width that is tapered quadratically along a length of the metallic finger. A solar cell and a method of forming a solar cell top contact are also provided.
US09806195B2

A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
US09806183B2

Methods for stress control in thin silicon (Si) wafer-based semiconductor materials. By a specific interrelation of process parameters (e.g., temperature, reactant supply, time), a highly uniform nucleation layer is formed on the Si substrate that mitigates and/or better controls the stress (tensile and compressive) in subsequent layers formed on the thin Si substrate.
US09806157B2

A transient voltage suppression (TVS) device and a method of forming the device are provided. The TVS device includes a first layer of wide band-gap semiconductor material formed of a first conductivity type material, a second layer of wide band-gap semiconductor material formed of a second conductivity type material over at least a portion of the first layer, the second layer including a first concentration of dopant. The TVS device further including a third layer of wide band-gap semiconductor material formed of the second conductivity type material over at least a portion of the second layer, the third layer including a second concentration of dopant, the second concentration of dopant being different than the first concentration of dopant. The TVS device further including a fourth layer of wide band-gap semiconductor material formed of the first conductivity type material over at least a portion of the third layer.
US09806156B2

A laminated body includes: a substrate portion composed of silicon carbide; and a graphene film disposed on a first main surface of the substrate portion, the graphene film having an atomic arrangement oriented with respect to an atomic arrangement of the silicon carbide of the substrate portion. A region in which a value of G′/G in Raman spectrometry is not less than 1.2 is not less than 10% in an area ratio in an exposed surface of the graphene film, the exposed surface being a main surface of the graphene film opposite to the substrate portion.
US09806155B1

A method of forming the semiconductor device that may include forming a trench in a substrate, and forming a metal nitride in the trench. The method may further include forming a split fin structure from the substrate. The metal nitride is positioned in the split portion of the fin structure. The method may continue with removing the metal nitride from a source region and drain region portion of the split fin structure, in which the metal nitride remains in a channel region portion of the split fin structure. A gate structure may then be formed on a channel region portion of the fin structure. A back bias is applied to the semiconductor device using the metal nitride in the split portion of the fin structure as an electrode.
US09806154B2

Present disclosure provides a FinFET structure, including a fin and a gate surrounding a first portion of the fin. A dopant concentration in the first portion of the fin is lower than about 1E17/cm3. The FinFET structure further includes an insulating layer surrounding a second portion of the fin. The dopant concentration of the second portion of the fin is greater than about 8E15/cm3. The insulating layer includes a lower layer and an upper layer, and the lower layer is disposed over a substrate connecting to the fin and has a dopant concentration greater than about 1E19/cm3.
US09806149B2

A MISFET has a threshold voltage that is not undesirably increased due to channel narrowing of the MISFET, and the MISFET is reduced in size and increased in withstand voltage. An anti-inversion p-type channel stopper region provided below an element isolation trench has an end that projects toward a channel region below a gate oxide film, and terminates short of the channel region. That is, the end is offset from the end of the channel region (the end of the element isolation trench). This suppresses diffusion in a lateral direction (channel region direction) of an impurity in the p-type channel stopper region, and thus suppresses a decrease in carrier concentration at the end of the channel region. As a result, a local increase in threshold voltage is suppressed.
US09806146B2

A semiconductor device comprising a substrate is disclosed. The substrate comprises: a well of type one; a first doped region of type two, provided in the well of type one; a well of type two, adjacent to the well of type one; a first doped region of type one, doped in the well of type two; and a second doped region of type two, provided in the well of type one and the well of type two, not touching the first doped region of type two. The substrate comprises no isolating material provided in a current path formed by the first doped region of type two, the well of type one, the well of type two and the first doped region of type one.
US09806141B2

An organic light emitting display device has a display panel including a first subpixel, a second subpixel, a data line, and sensing lines. The sensing lines may include a vertical sensing line and a horizontal sensing line connected to the vertical sensing line. The horizontal sensing line may be formed of a source/drain metal layer present on the first substrate, and one portion thereof connected to a first electrode of a sensing transistor of the first subpixel and the other portion thereof connected to a first electrode of a sensing transistor of the second subpixel may be positioned in a region intersecting with the data line, and electrically connected by a connection electrode formed of an insulated light blocking layer below the source/drain metal layer present on the first substrate.
US09806133B2

An organic light emitting diode (OLED) display includes a substrate, a thin film transistor (TFT) on the substrate, an OLED connected to the TFT and configured to emit white light, and a capping layer on the OLED. The capping layer includes a first high refractive index layer, a first low refractive index layer, a second high refractive index layer, and a second low refractive index layer that are sequentially stacked.
US09806101B2

The present invention provides a pixel array, a display panel and a display device, and the pixel array includes a plurality of gate lines and a plurality of data lines intersecting and insulated from each other, and a plurality of pixel units defined by the plurality of gate lines and the plurality of data lines intersecting each other. Each of the plurality of pixel units includes a thin-film transistor and a strip-shaped electrode, the strip-shaped electrodes of two adjacent pixel units in a same column have different inclination directions, the thin-film transistors of the two adjacent pixel units are in inclination angle regions of the two adjacent pixel units, respectively, and the inclination angle region is a region corresponding to a position at which extending directions of the strip-shaped electrode and the gate line intersect to form an acute angle in a pixel unit.
US09806097B2

A metal oxide semiconductor thin film, a thin film transistor (TFT), methods for fabricating the metal oxide semiconductor thin film and the TFT, and a display apparatus are provided. In some embodiments, the metal oxide semiconductor comprises: a first metal element, a second metal element and a third metal element, wherein: the first metal element is at least one of scandium, yttrium, aluminum, indium, and a rare earth element; the second metal element is at least one of calcium, strontium, and barium; and the third metal element is at least one of titanium and tin.
US09806095B2

High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric, a second gate electrode, and second spacers. The second gate dielectric is composed of the second dielectric layer disposed on the second fin active region and along sidewalls of the second spacers.
US09806093B2

A three dimensional NAND memory device includes word line driver devices located on or over a substrate, an alternating stack of word lines and insulating layers located over the word line driver devices, a plurality of memory stack structures extending through the alternating stack, each memory stack structure including a memory film and a vertical semiconductor channel, and through-memory-level via structures which electrically couple the word lines in a first memory block to the word line driver devices. The through-memory-level via structures extend through a through-memory-level via region located between a staircase region of the first memory block and a staircase region of another memory block.
US09806092B1

According to one embodiment, a semiconductor memory device includes first to fourth conductive layers, a first intermediate insulating layer, a second intermediate insulating layer, an inter-layer insulating layer, a first semiconductor body, a first memory layer, a second semiconductor body, a second memory layer, and a first interconnect. The second conductive layer is separated from the first conductive layer in a first direction. The third conductive layer is arranged with the first conductive layer in a second direction crossing the first direction. The fourth conductive layer is separated from the third conductive layer in the first direction and arranged with the second conductive layer in the second direction. The first intermediate insulating layer is provided between the first conductive layer and the third conductive layer. The second intermediate insulating layer is provided between the second conductive layer and the fourth conductive layer.
US09806089B2

Metal floating gate electrodes can be formed for a three-dimensional memory device by forming a memory opening having lateral recesses at levels of spacer material layers between insulating layers, depositing a continuous metal layer, and inducing diffusion and agglomeration of the metal into the lateral recesses to form discrete metal portions employing an anneal process. The metallic material can migrate and form the discrete metal portions due to surface tension, which operates to minimize the surface area of the metallic material. Optionally, two or more continuous metal layers can be employed to form discrete metal portions including at least two metals. Optionally, a selective metal deposition process can be performed to deposit additional metal portions including a different metallic material on the discrete metal portions. The metal floating gate electrodes can be formed without employing an etch process. A tunneling dielectric layer and a semiconductor channel can be subsequently formed.
US09806079B2

The semiconductor device includes: a transistor having an oxide semiconductor layer; and a logic circuit formed using a semiconductor material other than an oxide semiconductor. One of a source electrode and a drain electrode of the transistor is electrically connected to at least one input of the logic circuit, and at least one input signal is applied to the logic circuit through the transistor. The off-current of the transistor is preferably 1×10−13 A or less.
US09806078B1

FinFET spacer formation includes, for example, providing an intermediate semiconductor structure having a substrate having one or more fin having a first and a second plurality of gates disposed thereon, and a first plurality of spacers disposed on sides of the first and second plurality of gates, depositing a first liner on the structure, depositing a fill material at a level along inner portions of the first liner between the gates adjacent to the one or more fin, removing outer portions of the first spacers and the first liner away from the fill material, the remaining portions of the first spacers and the first liner defining a first thickness, and depositing a second liner having a second thickness over the gates and over the remaining portions of the first spacers and the first liner, and the fill material, and wherein the first thickness is greater than the second thickness.
US09806077B2

A semiconductor structure and a method for forming the same are provided. The method for manufacturing a semiconductor structure includes forming a fin structure over a substrate and forming an insulating layer around the fin structure. The method for manufacturing a semiconductor structure further includes removing a portion of the fin structure to form a trench in the insulating layer and filling the trench with a semiconductor material. The method for manufacturing a semiconductor structure further includes reflowing the semiconductor material to form a nanowire structure and a cavity under the nanowire structure.
US09806067B2

A semiconductor die is provided with an optical transmitter configured to transmit an optical signal to another die and an optical receiver configured to receive an optical signal from another die. Furthermore, a method of forming a semiconductor device is provided including forming a first semiconductor die with the steps of providing a semiconductor substrate, forming a transistor device at least partially over the semiconductor substrate, forming an optical receiver one of at least partially over and at least partially in the semiconductor substrate, forming a metallization layer over the transistor device, and forming an optical transmitter one of at least partially over the metallization layer and at least partially in the metallization layer.
US09806055B2

A package according to an embodiment includes a first device package and a fan-out RDL disposed over the first device package. The fan-out RDL extends past edges of the first device package. The first device package comprises a first die having a first redistribution layer (RDL) disposed on a first substrate, a second die having a second RDL disposed on a second substrate, an isolation material over the first die and extending along sidewalls of the second die, and a conductive via. The first RDL is bonded to the second RDL, and the first die and the second die comprise different lateral dimensions. At least a portion of the conductive via extends from a top surface of the isolation material to contact a first conductive element in the first RDL.
US09806054B2

A flexible substrate mount for holding a first substrate when the first substrate is being detached from a second substrate, and detachment means for debonding of the second substrate by bending the first substrate. Furthermore, this invention relates to a device for detaching a first substrate from a second substrate in one detachment direction (L) with the following features: a substrate mount for holding the first substrate, said first substrate mount being flexible in the detachment direction (L), a substrate mount for holding the second substrate and detachment means for the debonding of the first substrate from the second substrate as the first substrate bends, and a method of using the same.
US09806047B2

A wafer level package, electronic device including the wafer level package, and fabrication methods are described that include forming a cantilever pillar design as a portion of the wafer level package and/or a segmented solder connection for preventing and reducing connection stress and increasing board level reliability. In implementations, the wafer level device that employs example techniques in accordance with the present disclosure includes at least a section of a processed semiconductor wafer including at least one integrated circuit die, a first dielectric layer disposed on the processed semiconductor wafer, a first pillar, a second pillar formed on the first pillar, a second dielectric layer formed on the first dielectric layer and surrounding a portion of the first pillar and the second pillar, and at least one solder ball disposed on the second pillar.
US09806044B2

A bonding film has at least a left longitudinal branch, and a lower latitudinal branch; a first bonding area is configured in a first branch, and a second bonding area is configured in a second branch. A plurality of outer top metal pads and a plurality of inner top metal pads are exposed on a top surface within each bonding area. A central chip is configured in a central area of the bonding film and is electrically coupled to the inner top metal pad, and at least two peripheral chips are configured neighboring to the central chip and electrically coupled to the outer top metal pads. Each of the inner top metal pads is electrically coupled to a corresponding outer top metal pad through an embedded circuitry. The central chip communicates with the peripheral chips through the inner top metal pad, embedded circuitry, and outer top metal pad of the bonding film.
US09806034B1

A method of protecting sidewalls a plurality of semiconductor devices is disclosed. The method includes fabricating the plurality of semiconductor devices on a semiconductor wafer, etching to form a trench grid network on the backside of the semiconductor wafer. The trench grid network demarcate physical boundaries of each of the plurality of semiconductor devices. The method also includes depositing a protective layer on the backside and etching to remove the protective layer from horizontal surfaces and to singulate each of the plurality of semiconductor devices from the semiconductor wafer.
US09806030B2

In a method of forming an assembly including projecting or protruding nodules, a substrate is provided that supports an electrical circuit. One or more cavities are formed in the substrate, a conductive pad is formed in each cavity, and one or more conductive traces are formed on the substrate. Each conductive trace connects a conductive pad to a location, node, or terminal of the electrical circuit. A part of the substrate is removed to form the assembly that includes the electrical circuit, the one or more conductive traces, and a portion of each conductive pad projecting or protruding from the substrate. The electrical circuit can be formed on the substrate, which can be a PCB, or can be formed on a microchip supported by the substrate, which can be formed of semiconductor material, e.g., a semiconductor wafer.
US09806029B2

An electronic device comprising a first substrate, a second substrate, a first semiconductor chip comprising a transistor, comprising a first mounting surface bonded to the first substrate and comprising a second mounting surface bonded to the second substrate, and a second semiconductor chip comprising a first mounting surface bonded to the first substrate and comprising a second mounting surface bonded to the second substrate, wherein the first semiconductor chip comprises a via electrically coupling a first transistor terminal at its first mounting surface with a second transistor terminal at its second mounting surface.
US09806021B2

A method for manufacturing a semiconductor device of one embodiment of the present invention includes: forming an insulation layer to be processed over a substrate; forming a first sacrificial layer in a first area over the substrate, the first sacrificial layer being patterned to form in the first area a functioning wiring connected to an element; forming a second sacrificial layer in a second area over the substrate, the second sacrificial layer being patterned to form in the second area a dummy wiring; forming a third sacrificial layer at a side wall of the first sacrificial layer and forming a fourth sacrificial layer at a side wall of the second sacrificial layer, the third sacrificial layer and the fourth sacrificial layer being separated; forming a concavity by etching the insulation layer to be processed using the third sacrificial layer and the fourth sacrificial layer as a mask; and filling a conductive material in the concavity.
US09806019B2

An integrated circuit includes a first transistor including a first current electrode, a second current electrode, and a bulk tie; a first conductive line coupled between the first current electrode and a first supply voltage; and a second conductive line coupled to the second current electrode. A resistance of the second conductive line is at least 5 percent greater than a resistance of the first conductive line. The bulk tie is coupled to a second supply voltage. The first supply voltage is different than the second supply voltage.
US09806014B2

Various interposers and methods of manufacturing related thereto are disclosed. In one aspect, an apparatus is provided that includes an interposer that has a first side and a second side opposite the first side. The first side has a first reticle field and a second reticle field larger than the first reticle field. Plural conductor pads are positioned on the first side in the first reticle field. Plural dummy conductor pads are positioned on the first side in the second reticle field and outside the first reticle field.
US09806011B2

Some embodiments described herein include apparatuses and methods of forming such apparatuses. One such embodiment may include a routing arrangement having pads to be coupled to a semiconductor die, with a first trace coupled to a first pad among the pads, and a second trace coupled to a second pad among the pads. The first and second traces may have different thicknesses. Other embodiments including additional apparatuses and methods are described.
US09806010B2

A method of fabricating a package module includes placing a pin frame having plural pins on a circuit substrate; bonding the pins to corresponding bonding areas on a circuit substrate, thereby connecting the pins to the bonding areas; cutting off a connecting portion of the pin frame; and bending the pins to be vertical to the circuit substrate. By placing the pins on the corresponding bonding areas on the circuit substrate through the pin frame, and then cutting off the connecting portion of the pin frame and bending the pins, the efficiency of assembling the package module can be greatly promoted.
US09806008B1

A semiconductor package includes a leadframe having a clip foot portion, the clip foot portion having a first tie bar, a conductive clip situated over the leadframe, the conductive clip including a first lock fork having at least two prongs around the first tie bar so as to secure the conductive clip to the clip foot portion of the leadframe. The conductive clip includes a second lock fork having at least two prongs around a second tie bar of the clip foot portion. The conductive clip is electrically coupled to the clip foot portion of the leadframe. The clip foot portion of the leadframe includes exposed leads. The semiconductor package also includes at least one semiconductor device situated on the leadframe. The at least one semiconductor device is coupled to a driver integrated circuit situated on the leadframe.
US09806007B2

A semiconductor device manufacturing method which enhances the reliability of a semiconductor device. The method includes a step in which a source wire is connected with a semiconductor chip while jigs are pressed against a die pad. The jigs each have a first support portion with a first projection and a second support portion with a second projection. Using the jigs thus structured, the first projection is made to contact with a first point on the front surface of the die pad and then the second projection is made to contact with a second point on the front surface of the die pad located closer to a suspension lead than the first point.
US09806001B2

A semiconductor package can include a semiconductor die having an integrated circuit, a first die surface, and an opposite second die surface. A packaging can be attached to the die and have a holder surface opposite the first die surface. A heat spreader can be configured to cover the second die surface and the packaging surface and can be attached thereto by a layer of adhesive positioned between the heat spreader and the semiconductor die. A semiconductor package array can include an array of semiconductor dies and a heat spreader configured to cover each semiconductor die. A conductive lead can be electrically connected to the integrated circuit in a semiconductor die and can extend from the first die surface. Manufacturing a semiconductor package can include applying thermally conductive adhesive to the heat spreader and placing the heat spreader proximate the semiconductor die.
US09805999B2

The present application relates to a cured product and the use thereof. The cured product has excellent processability, workability, and adhesive properties or the like, and does not cause whitening and surface stickiness, etc. The cured product has excellent transparency, moisture resistance, mechanical properties, and cracking resistance, etc. The cured product, for example, may be applied as an encapsulant or an adhesive material of a semiconductor device to provide a device having high long-term reliability.
US09805992B2

A method for forming a fin on a substrate comprises patterning and etching a layer of a first semiconductor material to define a strained fin, depositing a layer of a second semiconductor material over the fin, the second semiconductor material operative to maintain the a strain in the strained fin, etching to remove a portion of the second semiconductor material to define a cavity that exposes a portion of the fin, etching to remove the exposed portion of the fin such that the fin is divided into a first segment and a second segment, and depositing an insulator material in the cavity, the insulator material contacting the first segment of the fin and the second segment of the fin.
US09805988B1

One aspect of the disclosure is directed to a method of forming a semiconductor structure including: forming a fin over a substrate within a device region, the fin including alternating layers of a sacrificial material and a semiconductor material, and including a lower channel region; forming a dopant-containing layer over the fin and the substrate; exposing an upper portion of the fin by removing the dopant-containing layer from the upper portion of the fin; removing the sacrificial material from the fin thereby suspending the semiconductor material within the fin between a pair of spacers and over the lower channel region of the fin; performing an anneal to drive in dopants from the dopant-containing layer to the lower channel region of the fin; and forming an active gate over the lower channel region of the fin and substantially surrounding the suspended semiconductor material over the lower channel region of the fin.
US09805968B2

According to an exemplary embodiment, a method of forming a semiconductor device is provided. The method includes: providing a vertical structure over a substrate; forming an etch stop layer over the vertical structure; forming an oxide layer over the etch stop layer; performing chemical mechanical polishing on the oxide layer and stopping on the etch stop layer; etching back the oxide layer and the etch stop layer to expose a sidewall of the vertical structure and to form an isolation layer; oxidizing the sidewall of the vertical structure and doping oxygen into the isolation layer by using a cluster oxygen doping treatment.
US09805966B2

A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
US09805965B2

Implementations described herein provide a chucking circuit for a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, a chucking circuit for an electrostatic chuck (ESC) has one or more chucking electrodes disposed in a dielectric body of the ESC, a plurality of pixel electrodes disposed in the dielectric body, and a chucking circuit having the one or more chucking electrodes and the plurality of pixel electrodes, the chucking circuit operable to electrostatically chuck a substrate to a workpiece support surface of the ESC, the chucking circuit having a plurality of secondary circuits, wherein each secondary circuit includes at least one capacitor of a plurality of capacitors, each secondary circuit is configured to independently control an impedance between one of the pixel electrodes and a ground.
US09805964B2

A system for zapping a wafer, the system may include a pulse generation unit that is configured to generate (a) first zapping pulses for causing a breakdown in a first location of a backside insulating layer of a wafer, and (b) second zapping pulses for causing a breakdown in a second location of the backside insulating layer of the wafer; a first conductive interface that is configured to convey the first zapping pulses to the first location, while contacting the first location; a second conductive interface that is configured to convey the second zapping pulses to the second location, while contacting the second location; and wherein the first location differs from the second location.
US09805963B2

Apparatuses, systems, and techniques for providing enhanced electrostatic chucks are provided. Such apparatuses, systems, and techniques may include, for example, a common RF and DC electrode in an electrostatic chuck, connection, at a location external to a semiconductor processing chamber, of a high-voltage DC power source and a high-voltage RF power source to a common conductive pathway leading to an electrostatic chuck in the interior of the semiconductor processing chamber, a very thin dielectric layer located on an upper surface of an electrostatic chuck, and/or an axial thermal choke that may be used to control heat flow within an electrostatic chuck.
US09805959B2

A plasma processing apparatus includes: a processing container which defines a processing space; a microwave generator; a dielectric having an opposing surface which faces the processing space; a slot plate formed with a plurality of slots; and a heating member provided within the slot plate. The slot plate is provided on a surface of the dielectric at an opposite side to the opposing surface to radiate microwaves for plasma excitation to the processing space through the dielectric based on the microwaves generated by the microwave generator.
US09805957B2

A throughput in processing a substrate can be improved and a running cost thereof can be reduced. A substrate processing apparatus 1 that processes a substrate 3 with a processing liquid and dries the substrate 3 includes a substrate rotating device 22 configured to rotate the substrate 3; a processing liquid discharging unit 13 configured to discharge the processing liquid toward the substrate 3; a substitution liquid discharging unit 14 configured to discharge a substitution liquid, which is substituted with the processing liquid on the substrate 3, toward the substrate 3 while relatively moving with respect to the substrate 3; and an inert gas discharging unit 15 configured to discharge an inert gas toward a peripheral portion of the substrate 3 in an inclined direction from above the substrate 3 while moving in a direction different from a direction in which the substitution liquid discharging unit 14 is moved.
US09805956B2

Disclosed is a method of manufacturing a lead frame, which comprises the steps of: providing an electrically-conductive base material having first and second planar sides; forming a plurality of conductive contact points on the first planar side of the base material; providing a non-conductive filling material over the first planar side of the base material so that the filling material fills spaces in-between the plurality of contact points to a form a layer comprising the filling material and the plurality of contact points; and etching the second planar side of the base material to expose a pattern of the filling material from the second planar side of the base material and to thereby form a plurality of isolated conductive regions on the second planar side of the base material, each isolated conductive region being connected with at least a respective one of the plurality of contact points on the first planar side of the base material. A lead frame structure is also disclosed.
US09805951B1

A method of fabricating a semiconductor device is disclosed. The method includes forming a dielectric layer over a substrate. The substrate has an edge region and a center region. The method also includes forming a dielectric ring in the edge region, forming a metal layer over the center region of the substrate and over the dielectric ring in the edge region of the substrate and polishing the metal layer in the center region and the edge region to expose the dielectric ring in the edge region of the substrate.
US09805947B2

The disclosed technology provides an electronic device and a fabrication method thereof. An electronic device according to an implementation of the disclosed technology may include: a first interlayer insulating layer formed over a substrate; first and second contact plugs passing through the first interlayer insulating layer to contact the substrate and alternately arranged to cross each other; a variable resistance element formed over the first interlayer insulating layer and coupled to the first contact plug; a second interlayer insulating layer formed over an entire structure including the first interlayer insulating layer; a third contact plug passing through the second interlayer insulating layer so as to be coupled to the variable resistance element, and a fourth contact plug passing through the second interlayer insulating layer so as to be contacted to the second contact plug; and conductive lines coupled to the third contact plug and the fourth contact plug, respectively.
US09805945B2

Disclosed is a method for selectively etching a first region made of silicon oxide to a second region made of silicon nitride. The method includes: performing a first sequence once or more to etch the first region; and performing a second sequence once or more to further etch the first region. The first sequence includes: a first step of generating plasma of a processing gas containing a fluorocarbon to form a fluorocarbon-containing deposit on a workpiece; and a second step of etching the first region by radicals of the fluorocarbon. The second sequence includes: a third step of generating plasma of a processing gas containing a fluorocarbon gas to form a fluorocarbon-containing deposit on a workpiece; and a fourth step of generating plasma of a processing gas containing oxygen gas and an inert gas in the processing container.
US09805941B2

Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
US09805938B2

A substrate processing apparatus includes a rotating holder for a substrate, a first nozzle used to eject a jet flow, a second nozzle used to discharge a continuous flow, and a nozzle moving unit integrally moving the first and second nozzles. A landing position of the continuous flow is located closer to a rotation center than a landing position of the jet flow is. At least movement paths of the landing positions of the jet flow and the continuous flow or flow directions of the continuous flow and the jet flow are different from each other. The movement paths are made to be different from each other by locating the landing position of the continuous flow downstream of the movement path of the landing position of the jet flow. The flow directions are made to be different from each other by tilting the continuous flow.
US09805937B2

Reliability of a semiconductor device is improved. A power device includes: a semiconductor chip; a chip mounting part; a solder material electrically coupling a back surface electrode of the semiconductor chip with an upper surface of the chip mounting part; a plurality of inner lead parts and a plurality of outer lead parts electrically coupled with an electrode pad of the semiconductor chip through wires; and a sealing body for sealing the semiconductor chip and the wires. Further, a recess is formed in a peripheral region of the back surface of the semiconductor chip. The recess has a first surface extending to join the back surface and a second surface extending to join the first surface. Also, a metal film is formed over the first surface and the second surface of the recess.
US09805931B2

Methods for processing of a workpiece are disclosed. A fluid that contains a desired dopant is prepared. The workpiece is immersed in this fluid, such that the dopant is able to contact all surfaces of the workpiece. The fluid is then evacuated, leaving behind the dopant on the workpiece. The dopant is then subjected to a thermal treatment to drive the dopant into the surfaces of the workpiece. In certain embodiments, a selective doping process may be performed by applying a mask to certain surfaces prior to immersing the workpiece in the fluid. In certain embodiments, the fluid may be in a super-critical state to maximize the contact between the dopant and the workpiece.
US09805926B2

A lamp for automotive front lighting and a vehicle headlight comprising the lamp are described, as well as a method of manufacturing the lamp. The lamp 10 comprises a base 12 for mechanical and electrical connection to an automotive headlight 50. A burner 14 is fixed to the base 12 and comprises an enclosed transparent vessel 22. A first filament 34 is arranged within the vessel 22. A holding wire 30c is arranged within the vessel, and a baffle 40 is arranged proximate to the first filament 34 to partially shield light emitted from the first filament 34. The baffle 40 is fixed to the holding wire 30c. The transparent vessel 22 comprises a vessel wall including a cylindrical portion 24 surrounding the first filament 34. In order to obtain a lamp which may withstand vibration, the vessel wall comprises, within the cylindrical portion 24, a deformed material portion 38 which contacts the baffle 40 or the holding wire 30c. The deformed material portion 38 is shielded from the first filament 34 by the baffle 40. During manufacture, the first filament 34, the baffle 40 and the holding wire 30c are inserted into the vessel 22, and the vessel wall is deformed to provide the deformed material portion 38.
US09805914B2

Methods for removing contamination from a surface disposed in a substrate processing system are provided herein. In some embodiments, a method for removing contaminants from a surface includes: providing a first process gas comprising a chlorine containing gas, a hydrogen containing gas, and an inert gas to a process chamber having the surface disposed within the process chamber; igniting the first process gas to form a plasma from the first process gas; and exposing the surface to the plasma to remove contaminants from the surface. In some embodiments, the surface is an exposed surface of a process chamber component. In some embodiments, the surface is a surface of a first layer disposed atop a substrate, such as a semiconductor wafer.
US09805905B2

A blanking device for multi-beams includes arrayed plural separate blanking systems, each performing blanking control switching a corresponding beam of multi charged particle beams between a beam ON state and a beam OFF state and each including a first electrode, a first potential applying mechanism applying two different potentials selectively to the first electrode for the blanking control, and a second electrode performing blanking deflection of the corresponding beam, the second electrode being grounded and paired with the first electrode, and a potential change mechanism changing a potential of the second electrode from a ground potential to another potential, wherein when a potential of the first electrode included in one of the separate blanking systems is fixed to the ground potential, the potential change mechanism changes the potential of the second electrode corresponding to the first electrode fixed to the ground potential, from the ground potential to the another potential.
US09805893B2

An electromagnetic relay (100) has high wear resistance, high corrosion resistance, and good magnetic properties. The electromagnetic relay (100) includes a magnetic component including an alloy layer on its surface formed by diffusion-coating of at least one element selected from the group consisting of Cr, V, Ti, and Al. The alloy layer has a thickness of 5 to 60 μm, inclusive.
US09805884B2

An electrical switch (120) includes an insulative housing (121), the operation part (150) disposed in the housing (121), and the metallic cover (160) enclosing the housing (121). The metallic cover (160) includes a front plate (161), a pair of side plates (164) extending rearwardly from two opposite lateral sides of the front plate (161). The side plate (164) include a main body (165) to cover the corresponding side wall (125) of the housing and an extension (167) extending beyond a rear face of the housing (121) and adapted to be soldered upon a printed circuit board (110) on which the housing (121) is seated.
US09805877B2

This disclosure provides collector plates for an energy storage device, energy storage devices with a collector plate, and methods for manufacturing the same. In one aspect, a collector plate includes a body. One or more apertures extend into the body. The apertures are configured to allow a portion of a free end of a spirally wound current collector of a spirally wound electrode for an energy storage device to extend into the one or more apertures.
US09805865B2

A ceramic electronic component has a ceramic element assembly, external electrodes, and metal terminals. The external electrodes are arranged on the surface of the ceramic element assembly. The external electrodes contain a sintered metal. The metal terminals are electrically connected to the external electrodes, respectively. The external electrode and the metal terminal are directly diffusion-bonded by diffusion of metal in the metal terminals into the external electrodes. The above arrangement provides a ceramic electronic component having highly reliable metal particle bonding and a method for manufacturing the same.
US09805858B2

Provided is a coil component that includes: a coil pattern provided on a substrate and including a plurality of separated end sections that are separated from each other with a gap in between; and a conduction member that allows a selective electrical conduction between the respective separated end sections. The selective electrical conduction causes a change in the number of turns of the coil pattern. Every section in the coil pattern configures a part of the coil component, irrespective of the number of turns.
US09805856B2

A magnetic core (50) has a core shaft part which is inserted into a bobbin part, and configures a magnetic path of magnetic flux formed by a coil (40); the magnetic core (50) is configured by combining a pair of magnetic components (51, 52); the magnetic components (51, 52) have core ends formed so as to cross a core shaft part; the base part (20) has a fitting part which fits with at least one of the pair of core ends, when the core shaft part is inserted into the bobbin part; and the coil component (100) is characterized in that the pair of magnetic components (51, 52) and the bobbin base (10) are fixed to each other, while being bound by a sheet-like fixation member (70) which extends over the core end and the base part having been fitted to each other.
US09805853B2

Both the size reduction and the increase in breakdown voltage of a high-voltage isolation transformer are realized, which is to be used in an insulating liquid in an X-ray generating apparatus. In the isolation transformer, an annular core and a primary coil wound around the annular core are housed in a first container, and a secondary coil is wound around the first container. A first opening through which an insulating liquid flows is provided in the first container.
US09805850B2

A NdFeB permanent magnet is provided and includes Nd of about 25 to 30 wt %, Dy of about 0.5 to 6 wt %, Tb of about 0.2 to 2 wt %, Cu of about 0.1 to 0.5 wt %, B of about 0.8 to 2 wt %, a balance of Fe and other inevitable impurities. In addition, a method for producing the permanent magnet is provided.
US09805843B2

An insulated electric cable 10 has a core member 1 formed by stranding a plurality of core wires 4, each of the core wires 4 including a conductor 5 and an insulating layer 6 covering the conductor 5, an inner sheath 7 covering the core member 1, an outer sheath 8 covering the inner sheath 7, and a paper tape 2 disposed between the core member 1 and the inner sheath 7 in a state that it is wrapped around the core member 1, in which the outer sheath 8 is formed by a flame-retardant polyurethane resin, and a cross-sectional area of each of conductors 5 is within 0.18-3.0 mm2.
US09805841B2

Virus multilayers can be used as templates for growth of inorganic nanomaterials. For example, layer-by-layer construction of virus multilayers on functionalized surfaces form nanoporous structures onto which metal particles or metal oxide nanoparticles can be nucleated to result in an interconnected network of nanowires.
US09805840B2

A halogen-free crosslinked resin composition includes a base polymer including as a main component (a) an ethylene vinyl acetate copolymer and (b) an acid modified polyolefin resin having a differential scanning calorimetry glass transition temperature Tg of not higher than −55 degrees Celsius in a mass ratio (a):(b) of 70:30 to 100:0, the base polymer including 50 to 70% by mass of vinyl acetate, 0.5 to 10 parts by mass of a silicone rubber with respect to 100 parts by mass of the base polymer, and 100 to 250 parts by mass of a metal hydroxide with respect to 100 parts by mass of the base polymer.
US09805836B2

A dilute copper alloy material used in an environment with presence of hydrogen includes pure copper including an inevitable impurity, more than 2 mass ppm of oxygen, and an additive element selected from the group consisting of Mg, Zr, Nb, Ca, V, Fe, Al, Si, Ni, Mn, Ti and Cr, the additive element being capable of forming an oxide in combination with the oxygen. A method of manufacturing a dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement includes melting the dilute copper alloy material by SCR continuous casting and rolling at a copper melting temperature of not less than 1100° C. and not more than 1320° C. to make molten metal, forming a cast bar from the molten metal, and forming the dilute copper alloy member by hot-rolling the cast bar.
US09805835B2

A radiation system includes a radiation device coupled to a control unit; a radiation blocker having an adaptor opening for receiving the radiation device when the radiation device is positioned on the radiation blocker; and a carrier comprising a first compartment for housing the radiation blocker and, a second compartment for housing the control unit. The adaptor opening can dimensionally fit the radiation device to block radiations from the radiation device when the radiation device is positioned in the radiation blocker. The radiation device can produce radiation having peak radiation wavelength in a range of from about 250 nm to about 450 nm and can have a peak irradiation power in a range of from about 0.5 W/cm2 to about 10 W/cm2.
US09805832B2

A standoff supporting a control rod drive mechanism (CRDM) in a nuclear reactor is connected to a distribution plate which provides electrical power and hydraulics. The standoff has connectors that require no action to effectuate the electrical connection to the distribution plate other than placement of the standoff onto the distribution plate. This facilitates replacement of the CRDM. In addition to the connectors, the standoff has alignment features to ensure the CRDM is connected in the correct orientation. After placement, the standoff may be secured to the distribution plate by bolts or other fasteners. The distribution plate may be a single plate that contains the electrical and hydraulic lines and also is strong enough to provide support to the CRDMs or may comprise a stack of two or more plates.
US09805827B2

A semiconductor memory device includes a memory cell array and a test circuit. The test circuit reads data stream from the memory cell array, configured to, on comparing bits of each first unit in the data stream, compares corresponding bits in the first units as each second unit and outputs a fail information signal including pass/fail information on the data stream and additional information on the data stream, in a test mode of the semiconductor memory device.
US09805823B1

A memory cell readable through a bit line and addressable through a word line can be stressed by applying a stress voltage to the bit line for a stress voltage time, and addressing the memory cell through the word line for an addressing time included within the stress voltage time. The memory cell can be tested by writing a data value into the memory cell, stressing the memory cell, reading the stored value from the memory cell, and determining whether the stored value corresponds to the data value. A testable memory array can include a memory cell addressable through a word line and readable through a bit line, a precharge circuit, a stress circuit, and an array built-in self test (ABIST) circuit. The ABIST circuit can be configured to stress the memory cell by applying a stress signal to the stress circuit.
US09805822B1

An electronic circuit includes an adaptive delay circuit and a test circuit. The adaptive delay circuit is configured to receive an input clock signal, to further receive a delay setting that specifies first and second delays, and to generate first and second delayed versions of the input clock signal that are delayed relative to the input clock signal by the first and second delays, respectively. The test circuit is configured to test the adaptive delay circuit by (i) programming the adaptive delay circuit with multiple different delay settings that each specifies a respective first delay and a respective second delay, (ii) for each of the multiple delay settings, measuring an actual time offset between the first and second delayed versions of the input clock signal, and (iii) generating a test result based on actual time offsets measured for the multiple different delay settings.
US09805815B1

A bit cell includes a program device comprising a first source/drain region and a second source/drain region separated by a first channel. The first source/drain region, the second source/drain region, and the first channel are positioned along a first direction. The bit cell also includes an electrical fuse (eFuse) having a conduction path along the first direction. A conductive element is electrically connected with the first source/drain region and one end of the eFuse.
US09805812B2

An operating method of a storage device which includes a nonvolatile memory is provided. The operating method includes performing a first program operation on selected memory cells of the nonvolatile memory and storing a first time when the first program operation is performed; and adjusting a program parameter according to a difference between the first time and a second time, and performing a second program operation on the selected memory cells using the adjusted program parameter, the second time being a time when the second program operation is performed.
US09805806B2

A non-volatile memory cell includes a substrate, a select gate, a floating gate, and an assistant control gate. The substrate includes a first diffusion region, a second diffusion region, a third diffusion region, and a fourth diffusion region. The select gate is formed above the first diffusion region and the second diffusion region in a polysilicon layer. The floating gate is formed above the second diffusion region, the third diffusion region and the fourth diffusion region in the polysilicon layer. The assistant control gate is formed above the floating gate in a metal layer, wherein an area of the assistant control gate overlaps with at least half an area of the floating gate.
US09805805B1

A buried source semiconductor layer and p-doped semiconductor material portions are formed over a first portion of a substrate. The buried source semiconductor layer is an n-doped semiconductor material, and the p-doped semiconductor material portions are embedded within the buried source semiconductor layer. An alternating stack of insulating layers and spacer material layers is formed over the substrate. Memory stack structures are formed through the alternating stack. The spacer material layers are formed as, or are replaced with, electrically conductive layers. The buried source semiconductor layer may be formed prior to, or after, formation of the alternating stack. The buried source semiconductor layer underlies the alternating stack and overlies the first portion of the substrate, and contacts at least one surface of the vertical semiconductor channels. The p-doped semiconductor material portions contact at least one surface of a respective subset of the vertical semiconductor channels.
US09805802B2

A memory device includes a memory cell array, a data pattern providing unit, and a write circuit. The memory cell array includes a plurality of memory regions. The data pattern providing unit is configured to provide a predefined data pattern. The write circuit is configured to, when a first write command and an address signal are received from an external device, write the predefined data pattern provided from the data pattern providing unit to a memory region corresponding to the address signal.
US09805793B2

A method is provided that includes providing a memory device including a first word line, a vertical bit line, a non-volatile memory material disposed between the first word line and the vertical bit line, and a memory cell disposed between the first word line and the vertical bit line. The first word line has a first height. The method further includes forming one or more conductive filaments in the memory cell. The one or more conductive filaments are substantially confined to a filament region having a second height less than the first height and disposed substantially about a vertical center of the memory cell.
US09805786B1

Apparatuses are presented for a semiconductor device utilizing dual I/O line pairs. The apparatus includes a first I/O line pair coupled to a first local I/O line pair. A second I/O line pair may be provided coupled to a second local I/O line pair. The apparatus may further include a first bit line including at least a first memory cell and a second memory cell, and a second bit line including at least a third memory cell and a fourth memory cell may be provided. The first local I/O line pair may be coupled to at least one of the first and second bit lines, and the second local I/O line pair is coupled to at least one of the first and second bit lines.
US09805784B2

Circuits and methods are described for a DDR memory controller where two different DQS gating modes are utilized. These gating modes together ensure that the DQS signal, driven by a DDR memory to the memory controller, is only available when read data is valid. Two types of gating logic are used: Initial DQS gating logic, and Functional DQS gating logic. The Initial gating logic has additional timing margin in the Initial DQS gating value to allow for the unknown round trip timing during initial bit levelling calibration. DQS functional gating is then optimized during further calibration to gate DQS precisely as latency and phase calibration are performed, resulting in a precise gating value for Functional DQS gating. Providing dual gating modes is especially useful when data capture is performed at half the DQS frequency in view of rising clock rates for DDR memories.
US09805779B2

A circuit includes a first memory cell and a data control circuit configured to provide first data and second data. The first memory cell has a first port and a second port. The first data is written from the first port to the first memory cell. The second data is based on information of the first data. The second port is configured to write the second data to the first memory cell based on a detection of a write disturb caused by the second port to the first port.
US09805775B1

An integrated circuit may include a memory controller that interfaces with memory that operates using a memory clock signal having repeating memory clock cycles. The memory controller may include controller circuitry that receives memory access requests and generates corresponding memory commands using a controller clock signal having repeating controller clock cycles. The controller circuitry may partition each controller clock cycle into time slots that are associated with respective memory clock cycles. Each generated memory command may require a corresponding number of memory clock cycles to fulfill using the memory. The controller circuitry may assign a time slot to each memory command while preventing conflicts with previously issued memory commands.
US09805774B2

A semiconductor memory device includes a ZQ calibration unit configured to generate a pull-up VOH code according to a first target VOH proportional to a power supply voltage and an output driver configured to generate a data signal having a VOH proportional to the power supply voltage based on the pull-up VOH code, wherein VOH means “output high level voltage.”
US09805769B2

A semiconductor device includes a first die connected to a first channel, the first die comprising a first memory chip; and a second die connected to a second channel, the second die comprising a second memory chip, the first and second channels being independent of each other and a storage capacity and a physical size of the second die being the same as those of the first die. The first and second dies are disposed in one package, and the package includes an interconnection circuit disposed between the first die and the second die to transfer signals between the first memory chip and the second memory chip.
US09805766B1

A video processing and playing method adapted to a video processing apparatus is provided. The method includes the following steps. A digital video is received and the digital video is decoded to obtain a plurality of video frames. The video frames are analyzed to detect a human feature of the digital video. A recognition result of the detected human feature is determined by comparing the detected human feature with a plurality of sample features. The recognition result of the detected human feature is associated with a timestamp according to a time point of detecting the human feature. A first video segment of the digital video played according to the timestamp when receiving a user command selecting the recognition result.
US09805755B1

Provided herein is a lubricant including a compound of Formula I L-(CF2CF2O)n—CF2CH2O—N—OCH2CF2O—(CF2CF2O)m-M  (Formula I) wherein L is selected from the group consisting of M is selected from the group consisting of wherein each instance of R1, R2, and R3 is independently selected from the group consisting of hydroxyl, alkoxyl, carbocycyl, phenyl, heterocycyl, piperonyl, carboxyl, alkylamido, acetamido, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, 2,3-dihydroxy-1-propoxyl, acryloyl, alkacryloyl, methacryloyl, a substituent of methyl methacrylate, and a substituent of glycidyl ether; and wherein n≧1, m≧1, and n and m are the same or different.
US09805745B1

According to one embodiment, a magnetic head includes first and second shields, a magnetic pole, and a trailing shield. The magnetic pole is provided between the first and second shields. The trailing shield is separated from the magnetic pole. The first shield includes first magnetic layers and first nonmagnetic layers arranged alternately along a first stacking direction. The first nonmagnetic layers include at least one selected from the group consisting of Ru, Cu, and Cr. Thicknesses of the first nonmagnetic layers each is not less than 0.3 nanometers and not more than 2.2 nanometers. The second shield includes second magnetic layers and second nonmagnetic layers arranged alternately along a second stacking direction. The second nonmagnetic layers include at least one selected from the group consisting of Ru, Cu, and Cr. Thicknesses of the second nonmagnetic layers each is not less than 0.3 nanometers and not more than 2.2 nanometers.
US09805741B1

A storage device includes a storage medium and a storage device controller that selectively varies a value of at least one write current parameter to generate alternating data tracks of variable written track width. According to one implementation, the alternating data tracks of variable written track width are generated with a single writer.
US09805740B2

The invention relates to a method for wording-based speech analysis. In order to provide a method that allows automated analysis of largely arbitrary features of a person from whom a voice file that needs to be analyzed comes, the invention detaches itself from the known concept of evaluating static keyword lists for the personality type. The method according to the invention comprises the preparation of a computer system by formation of a reference sample that allows the comparison that is necessary for feature recognition with other persons. The preparation of the computer system involves the recording and storage of a further voice file in addition to the voice files of the reference sample, the analysis of the additionally recorded voice file and the output of the recognized features using at least one output unit connected to the computer system. Furthermore, the invention relates to a speech analysis device for carrying out the method.
US09805739B2

A system and method for the use of sensors and processors of existing, distributed systems, operating individually or in cooperation with other systems, networks or cloud-based services to enhance the detection and classification of sound events in an environment (e.g., a home), while having low computational complexity. The system and method provides functions where the most relevant features that help in discriminating sounds are extracted from an audio signal and then classified depending on whether the extracted features correspond to a sound event that should result in a communication to a user. Threshold values and other variables can be determined by training on audio signals of known sounds in defined environments, and implemented to distinguish human and pet sounds from other sounds, and compensate for variations in the magnitude of the audio signal, different sizes and reverberation characteristics of the environment, and variations in microphone responses.
US09805737B2

According to an embodiment of the present disclosure, an apparatus for processing sensing data comprises an amplifier amplifying analog sensing data inputted from an outside source, an analog-digital converter converting the amplified analog sensing data into digital sensing data, a micro controller unit (MCU) including a signal modulator modulating the digital sensing data to a data wave having a sound waveform, transmittable to a sound input port of a terminal, and an output unit having a sound output terminal corresponding to the sound input port and outputting the data wave to the sound input port through the sound output terminal, wherein the data wave inputted to the sound input port is converted to an information value corresponding to the analog sensing data, and the information value is displayed on the terminal.
US09805732B2

Embodiments of the present application proposes a frequency envelope vector quantization method and apparatus, where the method includes: dividing N frequency envelopes in one frame into N1 vectors; quantizing a first vector in the N1 vectors by using a first codebook, to obtain a code word corresponding to the quantized first vector, where the first codebook is divided into 2B1 portions; determining, according to the code word corresponding to the quantized first vector; determining a second codebook according to the codebook of the ith portion; and quantizing a second vector in the N1 vectors based on the second codebook. In the embodiments of the present application, vector quantization can be performed on frequency envelope vectors by using a codebook with a smaller quantity of bits. Therefore, complexity of vector quantization can be reduced, and an effect of vector quantization can also be ensured.
US09805729B2

The present technique relates to an encoding device and a method, a decoding device and a method, and a program capable of obtaining higher quality audio. An encoding unit encodes position information and a gain of an object in a current frame in multiple encoding modes. A compressing unit generates, for each combination of encoding modes of each pieces of position information and gains, encoded meta data including encoding mode information indicating the encoding modes and encoded data which are the encoded position information and gains, and compresses the encoding mode information included in the encoding meta data. A determining unit selects encoded meta data of which amount of data is the least from among the encoded meta data generated for each combination, thus determining the encoding mode of each pieces of position information and gains. The present technique can be applied to an encoder and a decoder.
US09805728B2

An audio signal decoder for providing an upmix signal representation on the basis of a downmix signal representation and an object-related parametric information and in dependence on a rendering information has an object parameter determinator. The object parameter determinator is configured to obtain inter-object-correlation values for a plurality of pairs of audio objects. The object parameter determinator is configured to evaluate a bitstream signaling parameter in order to decide whether to evaluate individual inter-object-correlation bitstream parameter values to obtain inter-object-correlation values for a plurality of pairs of related audio objects, or to obtain inter-object-correlation values for a plurality of pairs of related audio objects using a common inter-object-correlation bitstream parameter value. The audio signal decoder also has a signal processor configured to obtain the upmix signal representation on the basis of the downmix signal representation and using the inter-object-correlation values for a plurality of pairs of related objects and the rendering information.
US09805724B2

Methods and apparatuses are provided for controlling an electronic device that includes a plurality of microphones configured to receive voice input, a storage unit configured to store a sound recording file, and a display unit configured to visually display speaker areas of individual speakers when recording a sound or playing a sound recording file. The electronic device also includes a control unit configured to provide a user interface relating a speaker direction to a speaker by identifying the speaker direction while recording the sound or performing playback of the sound recording file, and to update at least one of speaker information, direction information of a speaker, and distance information of the speaker through the user interface.
US09805722B2

An interactive speech recognition system includes a database containing a plurality of reference terms, a list memory that receives the reference terms of category “n,” a processing circuit that populates the list memory with the reference terms corresponding to the category “n,” and a recognition circuit that processes the reference terms and terms of a spoken phrase. The recognition circuit determines if a reference term of category “n” matches a term of the spoken phrase.
US09805721B1

Techniques for indicating to a voice-controlled device that a user is going to provide a voice command to the device. In response to receiving such an indication, the device may prepare to process an audio signal based on sound captured by a microphone of the device for the purpose of identifying the voice command from the audio signal. For instance, a user may utilize a signaling device that includes a button that, when actuated, sends a signal that is received by the voice-controlled device. In response to receiving the signal, a microphone of the voice-controlled device may capture sound that is proximate to the voice-controlled device and may create an audio signal based on the sound. The voice-controlled device may then analyze the audio signal for a voice command of the user or may provide the audio signal to a remote service for identifying the command.
US09805718B2

A dialog assistant embodied in a computing system can present a clarification question based on a machine-readable version of human-generated conversational natural language input. Some versions of the dialog assistant identify a clarification target in the machine-readable version, determine a clarification type relating to the clarification target, present the clarification question in a conversational natural language manner, and process a human-generated conversational natural language response to the clarification question.
US09805713B2

Systems and methods for addressing missing features in models are provided. In some implementations, a model configured to indicate likelihoods of different outcomes is accessed. The model includes a respective score for each of a plurality of features, and each feature corresponds to an outcome in an associated context. It is determined that the model does not include a score for a feature corresponding to a potential outcome in a particular context. A score is determined for the potential outcome in the particular context based on the scores for one or more features in the model that correspond to different outcomes in the particular context. The model and the score are used to determine a likelihood of occurrence of the potential outcome.
US09805712B2

A method for recognizing a voice and a device for recognizing a voice are provided. The method includes: collecting voice information input by a user; extracting characteristics from the voice information to obtain characteristic information; decoding the characteristic information according to an acoustic model and a language model obtained in advance to obtain recognized voice information, wherein the acoustic model is obtained by data compression in advance.
US09805708B2

The present invention relates to a sound absorbing and insulating material with superior moldability and appearance and a method for manufacturing the same, more particularly to a sound absorbing and insulating material consisting of an inner sound absorbing and insulating layer 1 formed of a first nonwoven fabric mainly formed of a heat-resistant fiber and a binder uniformly distributed inside the first nonwoven fabric and maintaining the three-dimensional structure inside the first nonwoven fabric and an outer sound absorbing and insulating layer 2′, 2″ formed of a second nonwoven fabric mainly formed of a heat-resistant fiber, wherein the outer sound absorbing and insulating layer is stacked on one or both sides of the inner sound absorbing and insulating layer, and a method for manufacturing the same. The sound absorbing and insulating material of the present invention has superior sound-absorbing property, flame retardancy, heat resistance, heat-insulating property and high-temperature moldability. In addition, there is no concern of deterioration of surface appearance caused by leakage of the binder due to the presence of the outer sound absorbing and insulating layer.
US09805700B1

An apparatus for operating a tuba comprises a board facilitating mounting one or more foot pedal units. Each foot pedal unit is connected to at least one rotary valve of the tuba, and comprises a pedal mounted to a frame using a drive unit and a chain. The chain is configured to run over a pulley member and is coupled at top portion of the frame. Upon pressing the pedal in sync with air supplied at mouthpiece of the tuba by a user, the chain is pulled through the pulley member causing a mallet shaped shaft to move in upward or downward direction. The movement of the mallet shaped shaft is configured to control movement of a paddle of at least one rotary valve via a cable for enabling the user to play all chromatic notes available within the tuba's range.
US09805699B1

A guitar arm rest adapted for mounting on a side of a guitar for holding a guitar player's arm in a proper position on the guitar. The guitar arm rest includes an arm rest cup received next to an edge of the side of the guitar. A front of the arm rest cup is adapted for receiving the guitar player's arm thereon. A base plate is hinged to a back of the arm rest cup. The base plate includes one or more suction cups for securing the guitar rest on the side of the guitar. One end of a height adjustment pivot plate is hinged on the base plate. An opposite end of the pivot plate is received in a selected hole in a hole track plate. The hole track plate is attached to a rear of the arm rest cup. The pivot plate is used to adjust the height/angle of the arm rest cup above the side of the guitar.
US09805690B2

A disclosed display device includes a touch panel including s number of receiving electrodes and k number of driving electrodes which are formed to intersect the receiving electrodes, k being less than s and larger than 2, the touch panel provided in an in-cell type. The display device further includes a touch sensing unit configured to respectively supply a first driving voltage and a second driving voltage to an nth driving electrode and an (n+1)th driving electrode, which are adjacent to each other among the driving electrodes, to determine whether the nth driving electrode is touched, n being a natural number which is more than one and less than k, the touch sensing unit further configured to respectively supply the first driving voltage and the second driving voltage to a kth driving electrode and a (k−1)th driving electrode to determine whether the kth driving electrode is touched.
US09805689B2

One or more apparatuses and methods for enabling easy diagnosis, repair, and maintenance of a commercial display screen are disclosed. In one embodiment of the invention, this apparatus includes a removable commercial display kit box, a corresponding base plate interface unit attached to a rear panel of the commercial display screen, and a guiding mechanism for docking the removable commercial display kit box and the corresponding base plate interface unit. Furthermore, in one embodiment of the invention, the removable display kit box contains an analog-to-digital converter board, a power board, automatic-switching dual data ports, maintenance check visual indicators, and a removable fuse inlet. In case of a commercial display screen malfunction, the removable display kit box allows a quick inspection and a modular repair or replacement of a malfunctioning part, without requiring the entire commercial display screen to be dismounted from a wall or another attached structure.
US09805687B2

A display driver integrated circuit includes a first slave module and a second slave module. The first slave module is initially set as a primary module to receive a mode conversion command, and is disabled based on the mode conversion command. The second slave module is initially set as a secondary module that does not receive the mode conversion command, and is set as the primary module instead of the first slave module when the first slave module is disabled. The first and second slave modules control processing or transfer of data through a channel included in or coupled to a display according to a predetermined protocol.
US09805681B2

A gate line driver circuit for a display panel includes a pull up circuit to drive a gate line of a display panel to a positive voltage that causes display panel switch elements that are coupled to the gate line to transition into an on state, a first pull down transistor to drive the gate line to a first negative voltage that causes the coupled display panel switch elements to transition into an off state, and a second pull down transistor to maintain the gate line at a second negative voltage that is less negative than the first negative voltage so as to maintain the coupled display panel switch elements in the off state. Other embodiments are also described and claimed.
US09805680B2

A liquid crystal display device and a gate driving circuit are disclosed. The gate driving circuit includes multiple-stage gate driving units and a control chip. Each stage gate driving unit includes a first pulling control unit, a first pulling unit, a second pulling control unit, a second pulling unit, a first reset unit, a second reset unit. The control chip is used for pulling a first clock signal and a first voltage reference signal to a first voltage level. Accordingly, the scanning lines driven by the gate driving circuit are all turned on in order to stably realize an All-Gate-On function.
US09805674B2

An adjusting method of display parameter and a liquid crystal display (LCD) system are provided. The adjusting method includes: obtaining a first luminance value and a second luminance value when a LCD panel displaying a minimum grayscale image and a maximum grayscale image respectively; based on the first luminance value, the second luminance value and a standard Gamma curve of the LCD panel, obtaining each target luminance value conforming to the standard Gamma curve and corresponding to each grayscale; based on the target luminance value of each grayscale and a relationship between grayscale voltage and luminance obtained in advance, obtaining a target grayscale voltage of each grayscale; and adjusting a grayscale voltage of each grayscale to be the target grayscale voltage of the grayscale to thereby achieve Gamma adjustment. By the above method, automatic adjustment of display parameter for the LCD panel can be achieved.
US09805672B2

A liquid crystal display (LCD) panel and an LCD device are provided. The panel has: a first transparent conductive layer configured to introduce a first polarity electric charge accumulated on a first substrate, a second transparent conductive layer configured to introduce a second polarity electric charge accumulated on a second substrate, and a connecting component disposed on the first substrate and/or the second substrate. Only when pressing the liquid crystal display panel, the first transparent conductive layer and the second transparent conductive layer are electrically connected to each other by the connecting component.
US09805658B2

The present disclosure provides a shift register, a gate driving circuit and a display device. The shift register comprises a set/reset unit, a pull down control unit, a pull down unit and an output unit. The set/reset unit sets or resets a pull up node in the output unit in response to a set signal or a reset signal. The output unit outputs an output signal in response to a first control signal through an output terminal of the shift register. The pull down control unit sets a pull down node in the pull down unit in response to a second control signal. The pull down control unit comprises a transistor and a capacitor, and the second control signal is applied to a gate of the transistor through the capacitor.
US09805657B2

A circuit has a first portion configured to act as a shift register to provide an output signal via an output terminal, and a second portion configured to act as an inverter to invert the output signal at the output terminal of said first portion from a logic high state to a logic low state or vice versa. This is to forcibly turn off one or more transistors in a pixel circuit that provides subpixel or pixel-related control in an OLED display, such that an anode voltage of an organic light emitting diode does not exceed a turn-on voltage thereof.
US09805656B2

An organic light emitting display device, a pixel circuit of the organic light emitting display device and a method of driving the same are disclosed. The pixel circuit comprises a driving transistor, a first transistor, a second transistor, a third transistor, a fourth transistor, a first capacitor, a second capacitor, a light emitting diode and a compensating diode. The degradation of the light emitting diode is compensated by the compensating diode. Since the degradation phenomena of the light emitting diode is compensated by the compensating diode, the light emitting diode is able to maintain an effective and normal brightness while using the same driving voltage, thereby ensuring higher display quality of images and scenes of the organic light emitting display device.
US09805655B2

The present invention provides a pixel circuit and a driving method thereof, as well as a display device. The pixel circuit comprises a drive transistor and a first energy storage element, a source of the drive transistor being connected with a first end of the first energy storage element. The pixel circuit further comprises a driving module, and has a reset voltage input terminal, a data voltage input terminal, a working voltage input terminal and a plurality of control signal input terminals. The pixel circuit provided by the present invention can prevent the driving current flowing through the electroluminescent unit from being influenced by the turn-on threshold value of the corresponding drive transistor, thereby solving the problem of non-uniform display brightness caused by drift of the turn-on threshold value of the drive transistor thoroughly.
US09805652B2

When using a flexible substrate to protect and support various components of an organic light emitting display device, among components including driving elements disposed on each of pixels of the organic light emitting display device, components where a high-level signal is applied during an emission period are grouped and are disposed on one side of the pixels. Further, components where a low-level signal is applied during the emission period are grouped and are disposed on the other side of the pixels. Accordingly, an electric field occurring due to a potential difference in the flexible substrate is minimized and shifting of a threshold voltage Vth of a thin-film transistor may be minimized. Thus, an OLED without an after-image can be provided.
US09805649B2

A display device includes a plurality of pixels, a gate control line electrically connected to the pixels, an auxiliary power line isolated from the gate control line, and a number of auxiliary switches between the gate control line and the auxiliary power line. The at least one auxiliary switch is controlled by an auxiliary control line isolated from the auxiliary power line and the gate control line. The at least one auxiliary switch electrically connects the gate control line and the auxiliary power line.
US09805642B2

An organic light emitting display device includes a display panel having a plurality of pixels provided with a pixel circuit to operate an organic light emitting diode, and a driving circuit to drive the display panel, wherein ‘n’ horizontal sensing lines are formed in the display panel, and a method for driving the display device includes: dividing the ‘n’ horizontal sensing lines formed in the display panel into a plurality of blocks; and sequentially or non-sequentially sensing the plurality of blocks via the sensing lines, wherein the plurality of blocks are sensed in order from the first to the last of the ‘n’ sensing lines by a sequential or non-sequential method.
US09805641B2

The display device includes a first pixel, a second pixel, and a third pixel each including a first transistor, a second transistor, and a light-emitting element. In each of the first to third pixels, a first terminal of the first transistor is electrically connected to a signal line, a second terminal of the first transistor is electrically connected to a gate of the second transistor, a first terminal of the second transistor is electrically connected to a power supply line and a second terminal of the first transistor is electrically connected to the light-emitting element. A gate of the first transistor in the first pixel is electrically connected to a first scan line. A gate of the first transistor in the second pixel is electrically connected to a second scan line. A gate of the first transistor in the third pixel is electrically connected to a third scan line.
US09805638B2

There are provided a shift register, an array substrate and a display apparatus. The shift register comprises: a triggering module, output module, input terminal, first output terminal and a second output terminal, wherein: the trigger module is configured to, according to an input signal from the input terminal, output a triggering signal that has a phase the same as the input signal and delays half a clock cycle more than the input signal under the action of a clock signal; the output module is configured to output an output signal that has a phase opposite to the input signal and delays half a clock cycle more than the input signal to the first output terminal under the triggering of the triggering signal and under the action of the clock signal; and an operating voltage of a signal outputted from the first output terminal is supplied by a direct current power supply.
US09805637B2

A display device is provided. In the display device, sub-pixels are coupled to scan lines and data lines. On the same scan line, the sub-pixels with a predetermined number are belonged into a pixel group. For two pixel groups coupled to the same data lines and respectively coupled to two adjacent scan lines, two sub-pixels, which are respectively belonged into the two pixel groups and successively receive the corresponding data signals in time, receive the same one of the various color information. For each pixel group, in each display period, the enable states of the clock signals have a plurality of combinations having a specific number, the specific number is 2×CK2, where C represents two clock signals are selected from the clock signal having the predetermined number, and K is a positive integer.
US09805632B2

A lighted display for mounting upon a vehicle having a trailer hitch receiver. The lighted display includes an elongated base member with a trailer hitch mount affixed midway along the base member. The base member also incorporates a horizontal step plate extending outward from upper edge of the base member allowing easier access to the rear of the vehicle. The base member is configured to receive multiple lighting elements within an elongated vertical channel. The lighting elements are connected to a trailer wiring plug which is configured to engage the vehicles trailer wiring connector. A message board is positioned within the vertical channel of the base member. The message board is made of a semi-translucent material which allows a portion of the light from the lighting elements to pass. The message board is partially masked with an opaque material, the unmasked portions forming the desired message for display. Upon illumination of the vehicle driving lights, one or more of the lighting elements are illuminated at the low light intensity level. Upon illumination of the vehicle brake light, one or more of the lighting elements are illuminated at the high light intensity level. And upon illumination of the vehicle turn signal light one or more of the lighting elements are illuminated at the high light intensity level in coordination with and on the corresponding side of the vehicle as the vehicle turn signal light.
US09805622B2

The invention relates to a lung simulator apparatus, as well as to a method to ventilate a lung simulator with a ventilator. The lung simulator apparatus comprises an air chamber with a variable volume for an exchangeable gas, which air chamber is connected in parallel with two air conduits, and a gas exchange element for injecting a tracer gas into the air chamber, wherein the volumes of the air conduits are substantially different. The method of simulating lung function comprises filling a first gas into the air chamber, which has a variable volume and which is connected in parallel with the two air conduits, and injecting a second gas into the air chamber, pressing the first and second gas out of the air chamber, and optionally repeating these steps.
US09805613B2

A method for providing adaptation to a question answering (QA) system having an associated plurality of trace data and a question-answer set. The method includes submitting a set of questions to the QA system; receiving back from the QA system a set of answers; comparing the set of answers to answers in the question-answer set; and generating the plurality of trace data based on comparison, and an estimate of how much more training data is needed. The generating comprises (a) for each question type, successively sample an increasing number of question-answer pairs from the question-answer set; (b) automatically train the QA system using the sampled question-answer pairs; (c) automatically compute a functional dependence of the QA system performance on the remaining questions relative to the size of the sample; and (d) extrapolate from the functional dependence a number of training question-answer pairs of each question type.
US09805611B2

An airfield sign that includes a dynamic display area.
US09805610B2

A system and method for passively detecting aircraft wingtip strikes includes generating a digital base map represented by a plurality of aerodrome cells. A numeric value representative of the specific wingtip is assigned to each of the aerodrome cells. An index count array is generated that has a separate entry for each numeric value. A digital aircraft structure representative of an aircraft is generated, and is represented by a plurality of aircraft cells. A determination is made as to whether a portion of the aerodrome cells are or would be replaced with the plurality of aircraft cells. Each numeric value of the aerodrome cells that are or would be replaced is counted to determine a replacement count associated therewith and that is entered into the separate entry in the index count array for that numeric value. One or more potential aircraft wingtip strikes are detected based on the replacement counts.
US09805603B2

The present invention provides an obstacle detecting system and method. The obstacle detecting system includes: a transmitting unit which emits a laser signal; a MEMS scanning mirror which scans detecting regions set at an angle of view at which obstacles in front of a vehicle are detected and a cut-in situation when a vehicle in a next lane suddenly cuts in is detected, and divides the detecting regions into a plurality of regions to scan the plurality of regions at different point intervals; a receiving unit which receives the laser signal transmitted from the MEMS scanning mirror to detect information on an object detected in the detecting regions; and a processing unit which detects the obstacles and the cut-in situation through the information detected in the receiving unit to issue an alarm or transmit a braking command.
US09805600B2

Disclosed herein are an apparatus and a method for providing road guidance information to a vehicle. The apparatus may include: a position measurer configured to measure a position of the vehicle; a communicator configured to receive event information from an outside of the vehicle; and a processor configured to perform guidance and a warning for an event depending on whether or not the vehicle is scheduled to pass through an event occurrence point using a travel route history recorded by the position measurer and the received event information, when absence of map data is confirmed on the basis of the event information.
US09805597B2

The invention relates to a method and a stationary device for communication on the basis of an ad-hoc interacting motor vehicle communication system, particularly of the wireless variety. Communication occurs between the road users and/or pedestrians themselves and/or between road users and/or pedestrians and the traffic infrastructure wherein, in the near field of a traffic route junction, particularly T-junctions or intersections of traffic routes such as road or railway junctions, a radio transmission/receiving device associated with a first road user continuously transmits a message to at least one second radio transmission/receiving device that is associated with a device of the traffic infrastructure and located in the radio coverage range of said first radio transmission/receiving device, the message being transmitted such that a first direction of a change in position of the first road user is detected on the basis of the received message, a history of detected directions is compiled on the basis of these messages, a first correlation is determined between said first direction and the historical directions, a second correlation is determined with the result of said first correlation and a reference traffic lane of pre-plotted traffic lanes at the traffic route junction, said reference traffic lane corresponding to the geographic course and being the basis for road user and/or pedestrian control, particularly when initialising the traffic control, and road users and/or pedestrians being controlled on the basis of said first and/or second correlation.
US09805592B2

This presentation provides methods to track pedestrians heading angle using smart phone data. Tracking heading angle especially at or from stationary position is key for pedestrian safety, e.g., for smart cross system and pedestrian collision mitigation system. It provides pedestrian-to-vehicle (P2V) platform. It deploys smart phones or mobile devices, equipped with DSRC (Dedicated short range communication) support, to act as beacons for pedestrians: Phone can alert driver to pedestrian presence in path; Pedestrian Basic Safety Message (BSM) can aid awareness for vehicles; It can be used for bicycles, as well. It also provides pedestrian-to-infrastructure (P2I) platform. Smart phone, through DSRC/cellular, transmits pedestrian presence to crosswalks/signals: It enables advanced crosswalk lighting/warning scheme; It enables bundling of pedestrian presence to vehicles. In this presentation, we provide various examples and variations on these.
US09805583B2

Systems and techniques are provided for sensor bypass. Activation may be received at a bypass input of an entry point sensor of a security system while the entry point sensor is in an armed mode. The entry point sensor may detect that the entry point monitored by the entry point sensor is closed. The entry point sensor may enter into a bypass mode. Detection by the entry point sensor of an opening of the entry point while the entry point sensor is in the bypass mode may not result in the generation of an alarm by the security system.
US09805577B2

A motion sensing necklace comprising includes a pendant attached to lower ends of two lanyards. The pendant includes a help button for a user to generate a signal for help, and a battery to power the motion sensing necklace. A neck strap is attached to upper ends of the first and second lanyards. Two motion sensors are located within opposing ends of the neck strap. A microprocessor located within the neck strap processes signals from the motion sensors to determine whether motion has occurred. A transmitter or transceiver located within the neck strap transmits motion detection signals and alerts generated by the microprocessor.
US09805570B2

A system and method of reducing the incidence of false alarms attributable to dust in smoke detection apparatus. The method includes obtaining at least two sample air flows, subjecting a first airflow to particle reduction and measuring the level of particles in the first airflow and generating a first signal indicative of the intensity. The method also includes measuring the level of particles in the second airflow and generating a second signal indicative of the intensity. The first signal is compared to a predetermined alarm level and, if the alarm level is achieved, the first and second signals are subsequently compared and an output signal is generated based on the relative difference between the first and second signals.
US09805563B2

A security device includes: a housing having a plug receptacle; a spool rotatably coupled to the housing; a locking mechanism having a locked state and an unlocked state, the locked state preventing the spool from rotating in a first direction, and the unlocked state allowing rotation of the spool in the first direction and in a second direction; a plug having an inserted position and a removed position with respect to the plug receptacle, the inserted position maintaining the locking mechanism in the locked state, and the removed position allowing alteration of the locking mechanism from the locked state to the unlocked state; a cable coupled to the spool and to the plug; an alarm circuit which activates an alarm upon sensing discontinuity of the cable and/or the plug moving from the inserted position to the removed position, the alarm circuit coupled to and rotating with the spool.
US09805542B2

A gaming system displays one of a plurality of symbols in each of a plurality of symbol positions, at least one of the plurality of symbols being a target symbol for establishing a direction of shifting and at least one of the plurality of symbols being a magnetic symbol for shifting toward a target symbol. If any generated magnetic symbol is associated with a generated target symbol, the gaming system shifts that magnetic symbol toward the associated target symbol, resulting in an empty symbol position. The gaming system fills the empty symbol position by shifting a displayed symbol or by generating one of the plurality symbols and repeats until no magnetic symbol is associated with a target symbol. The gaming system provides an award for any displayed winning symbol combination. The gaming system removes symbols from each winning combination, fills the empty symbol positions, and repeats as above.
US09805531B2

An access arrangement for a vehicle includes a vehicle-side transceiver for transmitting query signals in a chronologically successive manner in first specified time intervals. The access arrangement also includes at least one mobile identification transmitter including an identification transmitter-side transceiver with an adjustable reception sensitivity for receiving the query signals of the vehicle-side transceiver. Furthermore, the access arrangement includes a monitoring device for outputting a control command in order to reduce the sensitivity of the identification transmitter-side transceiver by a first specified amount if the identification transmitter-side transceiver has received a specified number of query signals transmitted by the vehicle-side transceiver. By reducing the reception sensitivity, a stationary identification transmitter in the vicinity of the vehicle for example remains operational but no longer reacts to query signals of the vehicle-side transceiver, whereby power can be saved.
US09805523B2

A diagnostic method for vehicles from a group of vehicles wherein data relating to at least one vehicle from the group of vehicles are acquired from a social medium. Complaints relating to a criticized characteristic of the at least one vehicle are determined depending on the acquired data. Diagnostic information is generated for at least one vehicle depending on the complaints.
US09805520B2

A vehicle security service provision method in a vehicle gateway to provide communication in a vehicle includes determining whether or not an external device has been connected, transmitting an external device connection-informing message to a vehicle telematics unit through the in-vehicle communication when it is determined that the external device has been connected, receiving an external device connection acceptance message from the vehicle telematics unit, and processing a diagnosis request message received from the external device in response to the received external device connection acceptance message. In accordance with the disclosed method, connection of an external device to the vehicle is sensed in real time. Sensed results are informed to a user terminal, for execution of a user approval procedure. Accordingly, an effective vehicle security service can be provided.
US09805517B2

Systems and methods for integrating external algorithms into a flexible framework for imaging visualization data without altering the external algorithm to fit the flexible framework.
US09805512B1

A virtual reality (VR) headset calibration system calibrates a VR headset, which includes a plurality of locators and an inertial measurement unit (IMU) generating output signals indicative of motion of the VR headset. The system comprises a calibration controller configured to receive a headset model of the VR headset that identifies expected positions of each of the locators. The controller controls cameras to capture images of the VR headset while the headset is moved along a predetermined path. The images detect actual positions of the locators during the movement along the predetermined path. Calibration parameters for the locators are generated based on differences between the actual positions and the expected positions. Calibration parameters for the IMU are generated based on the calibration parameters for the locators and differences between expected and actual signals output by the IMU. The calibration parameters are stored to the VR headset.
US09805501B2

An image rendering method and apparatus where the method includes recognizing a target area from a to-be-rendered image, setting a virtual light source for the target area, and performing rendering on the target area using the virtual light source. When rendering is performed on the to-be-rendered image, the rendering performed on the to-be-rendered image is implemented using the virtual light source. The virtual light source plays a rendering action only on the target area corresponding to the virtual light source, and does not affect another part of the to-be-rendered image, and therefore an image effect of the to-be-rendered image may be relatively good.
US09805499B2

One embodiment involves receiving selection of a first quadrilateral and a second quadrilateral in an image being edited in an image editing application. An edge of the first quadrilateral may be shared with an edge of the second quadrilateral. In this embodiment, one or more manipulations associated with the first quadrilateral and/or the second quadrilateral may be received. In response to the received manipulation(s), an updated view of the image is generated or otherwise displayed according to one embodiment. The updated view may be based at least in part on the image, the received manipulation(s), and/or one or more constraints. For example, the updated view may be based at least in part on a three-dimensional scene constraint. In embodiments, the updated view is consistent with a three-dimensional scene in the image. In some embodiments, the updated view is generated in real-time or substantially real-time.
US09805498B2

An apparatus and method are described for ray tracing. In particular, one embodiment of an apparatus for ray tracing comprises: feature adaptive subdivision logic to analyze faces on a subdivision surface and to responsively identify the faces as being of a first type or a second type, the feature adaptive subdivision logic to employ a first set of processing techniques to faces of the first type to generate a first patch type and to employ a second set of processing techniques to faces of the second type to generate a second patch type; and ray intersection determination logic to determine an intersection point between a ray and each of the patches of the first patch type and the second patch type.
US09805492B2

An invention that pre-fetches virtual content in a virtual universe is provided. In one embodiment, there is a pre-fetching tool, including a ranking component configured to rank each of a plurality of members belonging to a social network of an avatar according to predefined ranking criteria. The pre-fetching tool further includes a pre-fetching component configured to pre-fetch a virtual content within a proximity of each of the plurality of members belonging to the social network of the avatar based on the ranking.
US09805478B2

Apparatus and a corresponding method for processing image data are provided. The apparatus has compositing circuitry to generate a composite layer for a frame for display from image data representing plural layers of content within the frame. Plural latency buffers are provided to store at least a portion of the image data representing the plural layers. At least one of the plural latency buffers is larger than at least one other of the plural latency buffers. The compositing circuitry is responsive to at least one characteristic of the plural layers of content to allocate the plural layers to respective latency buffers of the plural latency buffers. Image data information for a layer allocated to the larger latency buffer is available for analysis earlier than that of the layers allocated to the smaller latency buffers and processing efficiencies can then result.
US09805474B1

Pedestrian detection and counting for traffic intersection control analyzes characteristics of a field of view of a traffic detection zone to determine a location and size of a pedestrian area, and applies protocols for evaluating pixel content in the field of view to identify individual pedestrians. The location and size of a pedestrian area is determined based either on locations of vehicle and bicycle detection areas or on movement of various objects within the field of view. Automatic pedestrian speed calibration with a region of interest for pedestrian detection is accomplished using lane and other intersection markings in the field of view. Detection and counting further includes identifying a presence, volume, velocity and trajectory of pedestrians in the pedestrian area of the traffic detection zone.
US09805472B2

Various aspects of a system and method for smoke detection during an anatomical surgery are disclosed herein. In accordance with an embodiment of the disclosure, the method is implementable in a surgical scene analysis engine, which is communicatively coupled to an image-capturing device that captures one or more video frames. The method includes the estimation of a partially visible region in a current video frame, based on a temporal difference between the current video frame and a previous video frame from the one or more video frames. Thereafter, one or more candidate pixels are detected in the estimated partially visible region in the current video frame. Further, a smoke region is determined in the partially visible region, based on pruning of one or more candidate pixels.
US09805471B2

An information processing apparatus that controls registration of an image and association information to a registration unit of an image retrieval device that includes the registration unit in which the image and association information are registered in an associated manner, a retrieving unit that retrieves an image being similar to a retrieval subject image from the registration unit, and a transmitting unit that transmits the association information associated with the retrieved image to a terminal device, the information processing apparatus comprising: a selecting unit that selects the association information to be associated with a registration target image to be registered in the registration unit; a setting unit that performs setting to a setting item according to the association information selected by the selecting unit; and a transmitting unit that transmits the registration target image and the association information in which the setting item is set, to the image retrieval device.
US09805463B2

Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model.
US09805449B2

A composition information obtaining unit calculates a mammary gland/fat ratio and a first information obtaining unit obtains imaged contrast information representing a contrast of the radiation image. A second information obtaining unit sets target application condition of X-ray, and obtains target contrast information representing an intended contrast for the radiation image based on the intended application condition. A contrast correction amount determination unit determines a contrast correction amount based on the imaged contrast information and the target contrast information. An image processing unit performs image processing, including gradation processing based on the determined contrast correction amount, on the radiation image, and obtains a processed radiation image.
US09805443B2

A tentative local score between a point in a feature image in a template image and a point, in a target object image, at a position corresponding to the point in the feature image is calculated, and a determination is performed as to whether the tentative local score is smaller than 0. In a case where the tentative local score is greater than or equal to 0, the tentative local score is employed as a local score. In a case where the tentative local score is smaller than 0, the tentative local score is multiplied by a coefficient and the result is employed as a degree of local similarity.
US09805433B2

An area where development processing is irregular in imaging data are detected as an irregularity area. At least two areas having approximate feature amounts in the imaging data are detected as approximate areas. An altered region in the imaging data is specified from the approximate areas based on the irregularity area and the approximate areas.
US09805417B2

An automated trader facilitates automatic trading of tradeable objects over one or more electronic exchanges. According to one embodiment, an automated trader utilizes a user programmable interface. The user programmable interface allows the user to simply develop a program that is based on a set of specifications and relationships given by the user and input into a profile, or if desired, input directly into the programmable interface referred to as direct entry. For each tradeable object, a profile may be selected, and then an automated trader can execute the program to perform a series of actions according to that selected profile and directed order entry, if any. An automated trader may also be used at a communication level to create an intelligent interface between third-party trading-related applications and exchanges.
US09805411B1

Systems and methods for recommending and implementing network documents for users to offer items in a marketplace may be provided. A system can obtain user data that includes an item offered by a user in a first electronic marketplace. For example, the system can identify and catalog items offered by a particular user. The system can identify a second electronic marketplace for the user to offer the item. The system can determine implementation information for the second electronic marketplace. The system can generate a network document for the at least one item that is configured to be presented in the second electronic marketplace based at least in part on the implementation information.
US09805410B2

A client (e.g., an eReader) receives and displays a sample version of content to a user retrieved from a store server. The sample version is a subset of the full version of the content. The client determines a location in the sample content in which to insert a buy page that allows the user to purchase the full version. The buy page may be inserted at a location that minimizes the time the user spends waiting for the full version to be installed on the client. The client uses one or more locating factors to determine the location. The user may interact with the buy page inserted at the determined location to purchase the full version of the content. The client interacts with the store server to conduct the purchase transaction, and seamlessly transitions the user from the sample to the full version of the content.
US09805408B2

A system and method are disclosed for automating the provision of social media product recommendations in an electronic commerce environment. A user selects one or more products from one or more Pick Lists, which are a pictorial grouping of products that the user has selected, assembled and named. The user then selects a Pick Collage template, which is then populated with the selected product(s). Once populated, the Pick Collage template is processed to generate a Pick Collage, which provides a more stylized presentation of the selected product(s). Once generated, the Pick Collage is provided to a website associated with a merchant that provides the selected product(s).
US09805404B2

The present disclosure concerns the hierarchical splitting of large datasets by multi-level segmentation and providing a system and method for enabling requests of reuse of the values of previously estimated nodes of said hierarchy. This is applied in making connections between different suppliers in a complex hierarchical multi-level chain of purchase items, facilitating the communication of request for quotes and respective responses. The disclosure allows higher level bidders to traverse dense hierarchical multi-level chains of purchasing data, re-using existing estimates and quotes, allowing quicker processes and more efficient use of resources.The system comprises a Request for Quote module (RFQ Module), an estimate module (Estimate Module) and a Request for Quote reply module (RFQ Reply Module), and a module for storing and/or communicating existing estimates and quotes (Rides Module) across hierarchical levels in the purchase process.
US09805403B2

Customers seeking to acquire new products or services may need to be authorized for the new products or services. The authorization can depend on customer and product information, as well as on different authorization conditions such as qualification, re-qualification, and eligibility conditions. To efficiently authorize a customer for products or services under different authorization conditions, a table stores authorization rules including flags associating the rules with particular authorization conditions. Hence, among the rules that pertain to authorizing the customer for a product or service, one subset of rules can be associated with one authorization condition while a different subset is associated with another authorization condition. The customer is selectively determined to be authorized for the product or service under an authorization condition when the product or service information and/or the customer information satisfy all of the rules associated with the selected authorization condition.
US09805400B2

A system and method of providing media files such as songs or video over a network includes a first and a second transaction, separated by distinct website visits. In the first transaction, a file provider receives a payment over a network link, selects a first codec is selected based on a type of network link, and downloads a first copy of a media file to a customer that is compressed with the first codec. The provider also promises to download during a second transaction an additional copy of the song. During that second transaction, that or another provider downloads the additional copy of the media file without receiving further payment from the customer. The additional copy is compressed with a second codec that optimizes for the link used in the second transaction. Preferably, the customer concludes with a smaller AAC+ file downloaded to a mobile station and a higher fidelity AAC LTP file downloaded to a PC.
US09805399B2

A multi-tenant media processing platform system and method. At least a first media analysis service of a plurality of media analysis services is activated for at least a portion of an active communication session of an entity in the platform system. The first activated media analysis service performs a first media analysis on media of the active communication session that is collected by the platform system. The first activated media analysis service performs the first media analysis on the collected media while the communication session is active to generate a first media analysis result. During the active communication session, at least one media analysis result is applied.
US09805389B2

Systems and methods for performing near real-time merging of distributed data streams are described. For example, streams of ad impressions, ad clicks, and conversions are sorted by user id into virtual buckets. The buckets of data are distributed across multiple servers, so that each server can process their respective buckets of data independently. Each server uses synchronization logic to determine a running delay distribution of the data streams. Based on the delay distributions, merge processing of the streams is appropriately delayed to ensure that the ad impression and ad click stream information needed for correlating with the conversion stream information is likely to be available in real time.
US09805388B2

Monetizing on-line communications includes: assigning a price to become a buddy of a publisher in an on-line chat board; advertising the price to prospective subscribers of the publisher; receiving a bid from a prospective subscriber; and transmitting the bid offer to the publisher such that the publisher can accept or decline the bid offer.
US09805387B2

A printing device 1 has a print unit 21 that prints; a storage unit 23 that stores identification information; and a communication unit 22 that wirelessly transmits a position correction signal S1 including identification information stored in the storage unit 23.
US09805383B2

An inter-advertainment is an inter-active entertainment that relates to services of a business. A customer can play and win the inter-advertainment while waiting at the business. The inter-advertainment identifies images of objects at the business for the customer to find. The inter-advertainment has one or more playing levels with one or more instances of the inter-advertainment selected randomly. In order to win, the customer must correctly identify each object that correctly matches each of a corresponding image of the same object. The customer must take a still image of the matching objects and upload them via the Internet to an inter-advertainment engine. The inter-advertainment advances to a next image when the received image correctly matches a corresponding image of the same object. When the customer correctly matches all images, the customer is given the wining prize.
US09805381B2

Some aspects of this disclosure involve computation of a preference score for a certain type of food. In some embodiments described herein, measurements of affective response of at least ten users are collected. The measurements may include various values indicative of physiological signals and/or behavioral cues of the at least ten users. Each measurement of a user is taken with a sensor coupled to the user up to four hours after the user consumed the certain type of food. A preference score is computed based on the measurements. The preference score is indicative of how much the at least ten users enjoyed consuming the certain type of food and/or how well they felt after consuming the certain type of food.
US09805380B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for tracking offline purchases. One of the methods includes receiving information from a first user device identifying a requested commerce object, a geographical area, and an advertising identifier, identifying a plurality of sources of available inventory data for physical retail locations, searching the plurality of sources to determine one or more physical retail locations that have available inventory of the commerce object, serving instructions for a presentation of a user interface to a second user device, providing instructions for presentation of a prompt regarding whether the requested commerce object was purchased, receiving a response indicating that the requested commerce object was purchased, and storing data indicating the purchase in a memory with the advertising identifier.
US09805375B1

Customers in an electronic environment can be presented with the option to receive advertising, such as audio, video, or interactive content, in order to receive discounted pricing or similar benefits. In one embodiment, a customer can select to watch a video advertisement on a detail page for an item, and the displayed price for the item will be shown to decrease as the customer continues to watch the video. Such an approach enables the provider to obtain additional revenue from the advertisement, which can offset any loss or reduction in price of the item. Revenue can be generated in other ways using these ads, such as by displaying advertisements that will enable a customer to obtain lower prices on other items, such as accessories or services relating to an item that is determined to be of little or no profit for the provider.
US09805374B2

Techniques enable creation of a preview license for digital content. In some instances, the preview license indicates that it allows a content-consuming device to consume less than all of the content. This preview license may create a list specifying multiple portions of the digital content that the content-consuming device may consume. These techniques may also present to a device user an offer to purchase rights to consume all of the digital content after consumption of the preview-licensed portion(s). In other instances, a content server may embed the preview license into a content package that contains the digital content, allowing the server to distribute the package to multiple devices. In still other instances, the preview license may be bound to a domain rather than to individual devices. This allows member devices to share the digital content and the preview license, such that each member device may enjoy the preview experience.
US09805373B1

A method and system for knowledge management are disclosed. A plurality of profiles of entities are identified wherein the profiles comprise a shared characteristic. The contents of the plurality of profiles are added to a generated aggregate profile.
US09805372B2

Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
US09805371B1

A user may respond to a request of another user by entering text, such as a customer service representative responding to a customer. Suggestions of responses may be provided to the responding user so that the responding user may use a suggested response instead of entering text to provide a response. Previous messages between the two users and other information may be used to determine an appropriate suggested response. A conversation feature vector may be determined from previous messages, and response feature vectors may be determined from the conversation feature vector. The response feature vectors may be used to determine an appropriate suggested response.
US09805360B1

This disclosure describes a system for automatically transitioning items from a materials handling facility without delaying a user as they exit the materials handling facility. For example, while a user is located in a materials handling facility, the user may pick one or more items. The items are identified and automatically associated with the user at or near the time of the item pick. When the users enters and/or passes through a transition area, the picked items are automatically transitioned to the user without affirmative input from or delay to the user.
US09805357B2

An apparatus for managing data used for object recognition includes an image capturing unit configured to capture an image of an object, a storage unit storing image data of products registered for sale, an operation panel configured to receive a user selection, and a processor configured to determine the products registered for sale that are similar to the object, based on the captured image and the image data, display the similar products on the operation panel as user selectable items, determine one or more of the similar products designated by the user selection, and invalidate the designated similar products so that efficiency of object recognition by the apparatus can be improved.
US09805356B2

A system for personalizing printed cards or scrapbooks with web-based links comprises a point of sale display of greeting cards or scrapbooks and a plurality of affixable media. Each of the affixable media comprise a scannable code and a description of the online content that will be displayed when the code is scanned by a recipient. A purchaser is able to create a personalized card or scrapbook by selecting a card or scrapbook from the point of sale display, selecting a scannable code based on its associated description, and then affixing the selected scannable code to the selected card or scrapbook, thereby creating a personalized card or scrapbook that directs the recipient to online content chosen by the purchaser from the set of options provided by the various affixable media.
US09805350B2

The invention relates to a system and method providing access of one or more heterogeneous digital contents to at least one offline Digital Rights Management (DRM) user by a DRM server. This invention involves establishing the trust relationship among the DRM server, DRM client, user's machine and the end user by means of digital certificate. The server generates protected digital content by means of using a standard encryption algorithm. The invention further involves determining whether a license for accessing the protected file is requested by the legitimate user, and if so, generating a license consisting the user rights and the protected decryption key to be downloaded by legitimate user. The DRM client decrypts the protected file using a decryption key of the license, and renders the content to the end user by calling the appropriate and customized viewer during consumption.
US09805349B1

A method and a system are provided for delivering on-demand software packages. In one aspect, the method may include subscribing services of a service provider operating a server, the server including an operating system and several application packages installed therein, initiating a client terminal by performing a network booting process using the operating system installed in the server, and executing in the client terminal a subscribed application package installed in the server using resources of the operating system resident in the client terminal. The method may further include charging the user a fee according to the application packages and the operating system subscribed by the user.
US09805347B2

A server is operable to receive a media device identifying number (ID) and establish an association between a media device and a payment account and, in one embodiment, supports at least one of payment authorization and payment clearing based at least in part on the media device ID and the payment account. A network and system includes a payment card processor server that is operable to receive a payment authorization request and to determine if an authorized media device generated a purchase selection message and to determine to approve a received payment authorization request based, in part, if the media device was authorized for the purchase selection based upon a received media device ID.