An automotive text display arrangement is described which includes a driver text display positioned directly in front of an automobile driver and displaying a limited amount of text to the driver without impairing forward visual attention of the driver. The arrangement may include a boundary insertion mode wherein when the active text position is an active text boundary, new text is inserted between the text items separated by the active text boundary, and when the active text position is an active text item, new text replaces the active text item. In addition or alternatively, there may be a multifunctional text control knob offering multiple different user movements, each performing an associated text processing function.
A computer implemented method is provided for processing sparse data. A sparse data set is received. A modified sparse data set is calculated by replacing all nonzero values in the sparse data set with a common positive integer. The modified sparse data set is transposed to create a transposed data set. A covariance matrix is calculated by multiplying the transposed data set by the modified sparse data set. A tree of a predefined depth is generated by assigning columns of the sparse data set to right and left nodes based on co-occurrence with a first anchor column and a second anchor column. The first anchor column and the second anchor column are determined based on the covariance matrix.
Methods and apparatus are disclosed for using an index array and finite state machine for scatter/gather operations. Embodiment of apparatus may comprise: decode logic to decode a scatter/gather instruction and generate a set of micro-operations, and an index array to hold a set of indices and a corresponding set of mask elements. A finite state machine facilitates the gather operation. Address generation logic generates an address from an index of the set of indices for at least each of the corresponding mask elements having a first value. An address is accessed to load a corresponding data element if the mask element had the first value. The data element is written at an in-register position in a destination vector register according to a respective in-register position the index. Values of corresponding mask elements are changed from the first value to a second value responsive to completion of their respective loads.
A data processing system comprising: a processor comprising a plurality of cores, each core comprising a first processing pipeline and a second processing pipeline, the second processing pipeline having a different architecture to the first processing pipeline; a framework configured to manage the processing resources of the data processing system including the processor; and an interface configured to present to the framework each of the processing pipelines as a core.
The invention relates to a method for processing real-time data in a distribution unit of a distributed computer system, the computer system comprising a plurality of node computers and distribution units, the distribution unit containing, in addition to a switching engine (SE) and a switching memory (SM), one or more application computers each with one or more application central processing units and each with one or more application memories (AM), wherein the switching engine of the distribution unit, when it receives, at one of its ports, a message intended for an application computer, forwards this message to the addressed application computer through a direct memory access (DMA) unit that is arranged between the switching memory and the application memory of the addressed application computer and that is under the control of the switching engine. The invention also relates to an expanded distribution unit and a computer system with such expanded distribution units.
An audio system bus has a bus data line and a bus clock line. Audio producers are coupled to the bus to form a time-division multiplexed multi drop bus interface arrangement having protocol slots 0, 1, . . . N where N is an integer greater than two. A bus device is coupled to the bus that produces a) a frame marker on the bus data line in slot 0, and b) a data bit on the bus data line in slot 1. The audio producers are to produce their respective audio data bits in their assigned slots other than slots 0 and 1. Other embodiments are also described and claimed.
Apparatuses and methods of data communication between semiconductor chips are described. An example apparatus includes: a first die including a first switch circuit that receives a plurality of data signals, and further provides the plurality of data signals to a plurality of corresponding first ports among a plurality of first data ports and a first data redundancy port; and a second die including a second switch circuit that receives the plurality of data signals from the first die at a plurality of corresponding second ports among a plurality of second data ports and a second data redundancy port and further provides the plurality of data signals to a memory array.
A method for synchronizing transactions between components of a system on chip includes monitoring a partial sequence of transactions that use AXI communication protocol for a stream of address calls and a streams of transfer batches. For each of the address calls and transfer batches identified by the same unique identifier, extracting an anticipated an anticipated number of transfers per batch from each of the address calls of the stream of address calls, and recursively, comparing the anticipated numbers of transfers extracted from the address calls of the stream of address calls with the number of transfers in the transfer batches of the stream of batches. Pairing a predetermined number of consecutive address calls of the stream of address calls with consecutive batches of the stream of batches based on the comparison.
Disclosed aspects relate to hardware-based memory protection of a container-based virtualization environment. A set of access identifiers for a container of a kernel process related to a memory component may be established. An access request from a first user process to a first portion of the memory component may be received. A first candidate access identifier for the first portion of the memory component may be detected. A first access identifier of the set of access identifiers that corresponds to the first portion of the memory component may be identified. A hardware-based memory protection response operation may be determined. The hardware-based memory protection response operation may be carried-out.
Apparatuses, methods and storage medium associated with a memcached system are disclosed herewith. In embodiments, a server apparatus may include memory; one or more processors; a network interface card to support remote memory direct access of the memory, by a client device, for a value of a key using an address that is a morph address of a physical address of a storage location of the memory having the value; and server side memcached logic operated by the one or more processors. Other embodiments may be described and/or claimed.
A method of providing security in a computer system includes producing an initial block of data from a respective address of a memory location. An updated block of data may be calculated for each round of a plurality of rounds in a substitution-permutation network. This may include mixing an input block through a substitution layer including a plurality of substitution boxes, and a linear transformation layer including a permutation, to produce the updated block, before or after which respectively the input block or updated block may be mixed with a round key. The input block may be the initial block for the first round, and the updated block for an immediately preceding round for each round thereafter. A block of ciphertext may be produced with a key composed of the updated block for the last round, and the block of ciphertext may be written at the memory location.
Embodiments are directed to perfect physical garbage collection (PPGC) process that uses a NUMA-aware perfect hash vector. The process splits a perfect hash vector (PHVEC) into a number of perfect hash vectors, wherein the number corresponds to a number of nodes having a processing core and associated local memory, directs each perfect hash to a respective local memory of a node so that each perfect hash vector accesses only a local memory, and assigns fingerprints in the perfect hash vector to a respective node using a mask function. The process also performs a simultaneous creation of perfect hash vectors in a multi-threaded manner by scanning the Index once.
Providing memory bandwidth compression using multiple last-level cache (LLC) lines in a central processing unit (CPU)-based system is disclosed. In some aspects, a compressed memory controller (CMC) provides an LLC comprising multiple LLC lines, each providing a plurality of sub-lines the same size as a system cache line. The contents of the system cache line(s) stored within a single LLC line are compressed and stored in system memory within the memory sub-line region corresponding to the LLC line. A master table stores information indicating how the compressed data for an LLC line is stored in system memory by storing an offset value and a length value for each sub-line within each LLC line. By compressing multiple system cache lines together and storing compressed data in a space normally allocated to multiple uncompressed system lines, the CMC enables compression sizes to be smaller than the memory read/write granularity of the system memory.
One embodiment provides for a memory system comprising a cache memory and a cache control circuit to receive a request to perform a partial cache line write to a first cache line of the cache memory, merge the request to perform the partial cache line write with a pending request to write to the first cache line, and process a merged request as a full cache line write.
In an embodiment, a processor includes a plurality of cores and synchronization logic. The synchronization logic includes circuitry to: receive a first memory request and a second memory request; determine whether the second memory request is in contention with the first memory request; and in response to a determination that the second memory request is in contention with the first memory request, process the second memory request using a non-blocking cache coherence protocol. Other embodiments are described and claimed.
Examples disclosed herein relate to locally polling the value of a flag to determine whether a resource is free for a thread to use in a system with multiple processing nodes that are incoherent with regards to each other. A flag in a direct attached memory to one of the processing nodes is set to indicate that the resource is not free for the thread to use. A previous tail of a lock list is determined from a list master. The previous tail is located on another one of the processing nodes.
Systems and methods for writing data are provided. A lock-free container and methods of writing to the lock-free container are disclosed. The container is associated with a tail pointer that identifies free space in the container. Threads writing to the container access the tail pointer and update an offset in the tail pointer to account for a size of a write to the container. Multiple threads can write to the same container without having to contend for a container lock.
Systems, apparatuses and methods may provide for detecting an issued request in a queue that is shared by a plurality of domains in a memory architecture, wherein the plurality of domains are associated with non-uniform access latencies. Additionally, a destination domain associated with the issued request may be determined. Moreover, a first set of additional requests may be prevented from being issued to the queue if the issued request satisfies an overrepresentation condition with respect to the destination domain and the first set of additional requests are associated with the destination domain. In one example, a second set of additional requests are permitted to be issued to the queue while the first set of additional requests are prevented from being issued to the queue, wherein the second set of additional requests are associated with one or more remaining domains in the plurality of domains.
A system and method for performing regression testing on source code provides a data sample to one or more candidate instances executing a candidate version of source code for a code base and provides the data sample to plurality of baseline instances executing a baseline version of the source code. The baseline version of the source code and the candidate version of the source code differ. The regression testing system and method obtains candidate outputs from the one or more candidate instances and obtains baseline outputs from the plurality of baseline instances based on the provided data sample. One or more faults in the candidate version of the source code can be determined by comparing the candidate outputs the baseline outputs. A filter for excluding one or more data fields from the comparison can be generated based on a comparison between baseline outputs from one of the plurality of baseline instances and baseline outputs from another of the plurality of baseline instances. Faults can also be determined based on satisfaction of a sample count, a relative threshold, an absolute threshold, or a median absolute deviation comparison.
A method and system for automated UI testing through model driven techniques where the UI test case model is generated based on the selected UI model content. The system selects the UI model corresponding to which test case model is created and populated into a test case editor using a test case model creation module. In one embodiment, the test case model before being populated into the test case editor is created as a sequence of UI Actions based on a structure pattern of the selected UI model. In another embodiment, the test case editor displays and edits the test case model. A validation module, based on rules and constraints then validates the test case model against the corresponding UI model. Thereafter, a script generation module generates a test case script from the test case model for the selected UI model.
Computerized embodiments are disclosed for simulating requests and resources to be assigned to the requests by assignment logic. In one embodiment, a simulation session is initiated by generating test data that includes resource data, request data, and simulation state parameters. The test data is communicated to the assignment logic programmed to generate an assignment solution between resources and requests as represented by the resource data and the request data, respectively. The assignment solution is received from the assignment logic and the test data is updated. The test data can be updated by one or more of updating the simulation state parameters based on the assignment solution, adding at least one new request, or adding at least one new resource. The test data, as updated, is again communicated to the assignment logic and the process repeats until the simulation session is stopped.
Various systems and methods for are disclosed. For example, a method can involve extracting information from a response. The response is generated in response to a request generated by a test module during execution of a test case. The extracted information describes characteristics of transactions within the test case. The method can then involve generating a display, based upon the extracted information. The display includes information identifying each of the components that participated in at least one of the transactions within the test case. Such a method can be performed by a computing device implementing the test module.
A system for recording the interaction of a computer program via graphical user interface (GUI) is disclosed in which one or more operating system event queues are monitored and GUI interaction data logged.
The power consumption of a user device may be monitored as an application on the user device performs one or more actions. Device commands for the user device and monitoring commands for a power monitor may be generated based on a script. The script is created to trigger an application on a user device to perform one or more actions while power consumption of the user device is monitored. The device commands are sent to the application on the user device to trigger the application to perform the one or more actions. The monitoring commands are sent to the power monitor to command the power monitor to track the power consumption of the use device as the application performs one or more actions. Subsequently, power consumption data for the user device are received from the power monitor, and device event data are received from the user device for analysis.
Platform controller, computer-readable storage media, and methods associated with initialization of a computing device. In embodiments, a platform controller may comprise a boot controller and one or more non-volatile memory modules, coupled with the boot controller. In embodiments, the one or more non-volatile memory modules may have first instructions and second instructions stored thereon. The first instructions may, when executed by a processor of a computing device hosting the platform controller, cause initialization of the computing device. The second instructions, when executed by the boot controller, may cause the boot controller to monitor at least a portion of the execution of the first instructions by the computing device and may generate a trace of the monitored portion of the execution of the first instructions. In embodiments, the trace may be stored in the one or more non-volatile memory modules. Other embodiments may be described and/or claimed.
Systems and methods for automated system-level failure and recovery are described. In some embodiments, an Information Handling System (IHS) includes a processor and a memory, the memory having program instructions stored thereon that, upon execution by the processor, cause the IHS to execute a selected process configured to participate in an inter-process communication (IPC) with at least one other process, invoke an error handling process by simulating a fault in the IPC, and determine if the error handling process successfully handles the fault.
A method may include copying transaction rollback data to a buffer in a first memory. The method may further include calculating a checksum for the transaction rollback data, and storing the calculated checksum and a checksum pointer in the first memory. The checksum pointer may refer to a last valid location in a transactional memory region of the second memory for which the checksum is calculated. The method may further include writing, to the transactional memory region, the transaction rollback data from the buffer and the checksum and the checksum pointer from the first memory, and performing at least part of the transaction by writing new transaction data to the heap. The transaction rollback data may be useable to restore the heap to a state prior to initiating the transaction if the transaction was incomplete, upon reconnecting the card computing device after determining that a card tear event has occurred.
Provided are a computer program product, system, and method for recovering a volume table and data sets from a volume. Content from a backup volume table comprising a valid backup of a volume table from backup of the volume is processed to generate a recovery volume table for a recovery volume. The data sets in the volume are processed to determine whether they are valid. The valid data sets are moved to the recovery volume. A data recovery operation is initiated for the data sets determined not to be valid.
A backup and recovery architecture for applications compatible with the Microsoft Windows Volume Shadow Copy Service (VSS) includes a backup client module that includes an orchestration engine, an application manager, a common requestor, and a save transports component. The client module interacts with the VSS on the client in the generation of a shadow copy. Data is backed up from the shadow copy to a backup storage server. In various specific embodiments, the application manager includes functions that are application-specific and the orchestration engine includes functions that are not application-specific. A single consolidated log may be generated by the backup client module for a backup or recover operation.
Example implementations relate to obtaining information about and indicating a state of a storage device. In example implementations, an indication that a storage device is rebuilding address mappings may be received, and how much progress has been made in the rebuilding may be determined. A representation of the progress made in the rebuilding may be displayed.
A method includes a computing device sending write request messages to storage units. For instance, a first write request that includes a first group of slice payloads for first encoded data slices and their corresponding revision levels is sent to a first storage unit. The method further includes the first storage unit processing the first write request to include a group of status messages for the first encoded data slices regard revision level status. The method further includes the computing device processing the first write response message to flag the encoded data slice having a revision issue for a rollback message and flag encoded data slices not having a revision issue for a write commit message.
According to an example, a method for assigning redundancy in encoding data onto crossbar memory arrays is provided wherein each of said crossbar memory arrays include cells. The data may be allocated to a subset of the cells in multiple crossbar memory arrays. The redundancy for the data may then be assigned based on coordinates of the subset of cells within the multiple crossbar memory arrays onto which the data is allocated.
A method for controlling a system including a plurality of subsystems, includes receiving operational data from the plurality of subsystems of the system (S21). A future condition of each of the plurality of subsystems is estimated from the received operational data (S22). A control strategy for delaying a need for system maintenance is generated based on the estimated future condition of each of the plurality of subsystems (S23). An operation of the system is controlled based on the generated control strategy (S24).
A continuous anomaly detection service receives data stream and performs continuous anomaly detection on the incoming data streams. This continuous anomaly detection is performed based on anomaly detection definitions, which define a signal used for anomaly detection and an anomaly detection configuration. These anomaly detection definitions can be modified, such that continuous anomaly detection continues to be performed for the data stream and the signal, based on the new anomaly detection definition.
Utilities for use in actively detecting the occurrence of bad blocks in NAND flash storage devices and diagnosing the devices as faulty at some point before complete failure of the devices (e.g., before a number of allowable bad blocks has been reached) to allow a corresponding service processor to continue to write to available blocks for a period of time until a replacement NAND flash device can be identified. The utilities may also be utilized to predict the future occurrence of bad blocks in NAND flash devices, such as during the “burn-in” process of the devices (e.g., which tests the quality of the NAND flash device before being placed into service to weed out devices with defects).
A method is provided for healing reset errors for a magnetic memory using destructive read with selective write-back, including for example, a self-referenced read of spin-torque bits in an MRAM. Memory cells are prepared for write back by one of identifying memory cells determined in error using an error correcting code and inverting the inversion bit for those memory cells determined in error; identifying memory cells determined in error using an error correcting code and resetting a portion of the memory cells to the first state; and resetting one or more memory cells to the first state.
A server for providing a generic actor system container application comprising: status and control graphical user interfaces, a listener service, a cluster manager, an actor registry and discovery service, a system configurator, a plurality of handles, a plurality of listeners, and a plurality of generic actors, wherein the generic actor system container application is configured to: receive information associated with a plurality of customized domain specific actors; receive a plurality of domain specific connection information; generate the plurality of domain specific actors based on the information associated with the plurality of customized domain specific actors; register the plurality of domain specific actors; and execute and monitor a domain specific actor system using the domain specific actors based on the domain specific connection information.
An automated framework to deploy a HTTP-accessible backed-up virtualized S3-compliant object store in an OpenStack tenant namespace. The automation framework receives user specified configuration in the form of typed input and provisions and deploys the S3 virtual servers and volumes in the OpenStack project. The S3 servers are configured to provide a load-balanced frontend Proxy and data replication of objects across all virtual S3 storage servers. Once deployed the framework backs up each S3 virtual machine and associated volumes and implements a user-specified backup schedule for the provisioned object store. An S3-compliant HTTP endpoint is configured to allow access using an access key and secret key made visible only within the constraints of the deployment framework.
A system for allocating resources to demand requests is set forth. The system is configured to identify a set of resource requirements based on a demand request. The system is also configured to choose a resource that satisfies at least one of the identified resource requirements. The system is further configured to allocate the selected resource to the demand request based on whether a client can satisfy a locking prerequisite associated with the selected resource.
A method for the quasi-parallel execution of threads, including: within a time slice, time-limited resources, particularly a computing time, are allotted to the threads by a preemptive first scheduler on the basis of a priority of the threads, and the first scheduler is combined with further schedulers.
A method for executing multithreaded instructions grouped into blocks. The method includes receiving an incoming instruction sequence using a global front end; grouping the instructions to form instruction blocks, wherein the instructions of the instruction blocks are interleaved with multiple threads; scheduling the instructions of the instruction block to execute in accordance with the multiple threads; and tracking execution of the multiple threads to enforce fairness in an execution pipeline.
Techniques are described for providing processor-based dedicated fixed function hardware to perform runtime integrity measurements for detecting attacks on system supervisory software, such as a hypervisor or native Operating System (OS). The dedicated fixed function hardware is provided with memory addresses of the system supervisory software for monitoring. After obtaining the memory addresses and other information required to facilitate integrity monitoring, the dedicated fixed function hardware activates a lock-out to prevent reception of any additional information, such as information from a corrupted version of the system supervisory software. The dedicated fixed function hardware then automatically performs periodic integrity measurements of the system supervisory software. Upon detection of an integrity failure, the dedicated fixed function hardware uses out-of-band signaling to report that an integrity failure has occurred.The dedicated fixed function hardware provides for runtime integrity verification of a platform in a secure manner without impacting the performance of the platform.
Systems and methods for optimizing a virtual machine cluster. An example method may comprise receiving, by a processing device, an information characterizing a virtual machine cluster, the information comprising at least one of: values of one or more cluster configuration parameters, values of one or more cluster state parameters, or values of one or more user request parameters; and producing, in view of the received information, an ordered list of cluster configuration operations to be performed on virtual machines of the virtual machine cluster, the cluster configuration operations designed to yield a resulting configuration of the virtual machine cluster, wherein the resulting configuration is characterized by a quasi-optimal configuration score among configuration scores of two or more candidate configurations, the configuration score determined by applying one or more virtual machine scheduling policy rules to parameters of a candidate configuration.
Using a metadata of a layer, a prediction factor including a level of participation of the layer in a set of container images is computed. Each container image includes a corresponding set of layers and is usable to configure a container in a container-based virtualized data processing environment. Using a set of levels of participation corresponding to a set of layers, and using a condition in a prediction algorithm, a subset of layers that have to be pre-provisioned at a node is predicted. The subset of layers is adjusted, to form an adjusted subset of layers, by looking ahead at a container requirement of a workload that is planned for processing at a future time. The adjusted subset of layers is caused to be provisioned on the node prior to the future time.
A method includes receiving a request from a user device executing a native application. The request indicates an accessed state of the native application to which the native application is set. The method includes identifying one or more categories of the accessed state of the native application and recommended application resource identifiers based on features of the accessed state. Each of the recommended application resource identifiers references a different state of a native application. When a native application is selected by the user, the method includes setting the native application to the different state. For each of the application resource identifiers, the method includes identifying one or more recommended categories of the state referenced by the recommended application resource identifier and determining whether to recommend the different state referenced by the recommended application resource identifier based on features of the accessed state and features of the state of the application.
An apparatus including first and second reservation stations. The first reservation station dispatches a load micro instruction, and indicates on a hold bus if the load micro instruction is a specified load micro instruction directed to retrieve an operand from a prescribed resource other than on-core cache memory. The second reservation station is coupled to the hold bus, and dispatches one or more younger micro instructions therein that depend on the load micro instruction for execution after a number of clock cycles following dispatch of the first load micro instruction, and if it is indicated on the hold bus that the load micro instruction is the specified load micro instruction, the second reservation station is configured to stall dispatch of the one or more younger micro instructions until the load micro instruction has retrieved the operand. The plurality of non-core resources includes an off-core cache memory, configured to store memory operands which may have been cached from a system memory that are not present in one or more on-core cache memories.
Examples of the present disclosure provide apparatuses and methods for determining a vector population count in a memory. An example method comprises determining, using sensing circuitry, a vector population count of a number of fixed length elements of a vector stored in a memory array.
A method and apparatus for including in a processor instructions for performing logical-comparison and branch support operations on packed or unpacked data. In one embodiment, instruction decode logic decodes instructions for an execution unit to operate on packed data elements including logical comparisons. A register file including 128-bit packed data registers stores packed single-precision floating point (SPFP) and packed integer data elements. The logical comparisons may include comparison of SPFP data elements and comparison of integer data elements and setting at least one bit to indicate the results. Based on these comparisons, branch support actions are taken. Such branch support actions may include setting the at least one bit, which in turn may be utilized by a branching unit in response to a branch instruction. Alternatively, the branch support actions may include branching to an indicated target code location.
A method is provided in which a call agent process that supports one or more Internet Protocol (IP) calls, stores to persistent memory a set of data associated with the one or more IP calls. An outage is detected affecting the one or more IP calls. Using the data retrieved from the persistent memory, the one or more IP calls are resynthesized using a device simulator process to simulate connectivity with endpoints that were participating in the one or more IP calls prior to the outage. After resynthesizing, depending on activity detected from devices associated with the one or more IP calls, the one or more IP calls are internally re-stitched/re-establishing (without signaling to endpoints) with the endpoints involved in the one or more IP calls, or the one or more calls are fully re-stitched/re-established by signaling an endpoint that was participating in the one or more IP calls.
An image processing apparatus is provided. Firmware customized for a user who uses the image processing apparatus has been installed in advance in the image processing apparatus. The image processing apparatus has a hardware processor configured to monitor a condition of use of the image processing apparatus and determine whether or not the monitored condition of use is a condition of use adapted to the customized firmware, and to perform processing for updating to the latest standard firmware when it is determined that the monitored condition of use departs from the condition of use adapted to the customized firmware.
A method for assigning a random number to a user in a set of users includes computing a random number assignment seed value based on an ASCII-value representation of the user's name, dividing the random number assignment seed value by a quantity of unassigned numbers available to be assigned to the user to produce a modified random number assignment seed value, rounding the modified random number assignment seed value down to an integer, computing a random number offset value by multiplying the quantity of unassigned numbers by the rounded modified random number assignment seed value, subtracting the random number assignment offset value from the random number assignment seed value to determine a random number assignment lookup number, determining the random number to be assigned to the user based on the random number assignment lookup number, and assigning the determined random number to the user.
A two-layer image display device includes a back side LCD, a transparent screen, and a lower side LCD. The back side LCD displays an image on a display screen. The transparent screen is disposed on a front side of the display screen of an image display device. The lower side LCD projects an image from a lower position of the transparent screen. The transparent screen reflects, with directivity, light incident at a predetermined angle and includes an anisotropic optical film which transmits light incident at an angle other than the predetermined incident angle. The lower side LCD is disposed at a position where the image incident at the predetermined angle is projected and reflected on the transparent screen. The back side LCD is disposed at a position where incident light from an image displayed on the display screen transmits through the transparent screen.
An image forming apparatus, connectable to a user terminal, includes a memory to store terminal identification information for identifying the user terminal, and file identification information for identifying at least one file printable by the image forming apparatus, and circuitry to report file information including information on the file printable by the image forming apparatus to the user terminal, acquire terminal identification information of the user terminal from the user terminal as a response to the reporting of the file information, determine whether the terminal identification information acquired from the user terminal matches the terminal identification information stored in the memory, and report the file identification information of the at least one file to the user terminal based on a determination that the terminal identification information acquired from the user terminal matches the terminal identification information stored in the memory.
Systems and methods for preserving logical page order in a print job. One embodiment is a system that includes an interface that receives a print job having documents, and a controller that identifies different groups of logical pages belonging to different documents. The controller inserts an identifier into each logical page of the different groups that distinguishes logical pages of different documents, and directs the print job into a print workflow that comprises an ordered set of activities to perform upon the documents. The controller also obtains layout information that indicates a placement of one or more logical pages on a sheet, retrieves identifiers from each of the one or more logical pages of the sheet, and detects a print error based on a difference in the identifiers retrieved for the sheet.
In a network storage device that includes a plurality of data storage drives, error correction and/or recovery of data stored on one of the plurality of data storage drives is performed cooperatively by the drive itself and by a storage host that is configured to manage storage in the plurality of data storage drives. When an error-correcting code (ECC) operation performed by the drive cannot correct corrupted data stored on the drive, the storage host can attempt to correct the corrupted data based on parity and user data stored on the remaining data storage drives. In some embodiments, data correction can be performed iteratively between the drive and the storage host. Furthermore, the storage host can control latency associated with error correction by selecting a particular error correction process.
There is provided a magnetic disk device including a magnetic disk, and circuitry configured to receive a control command for instructing to write data in the magnetic disk or to rear the data from the magnetic disk, perform a data access process of writing the data in the magnetic disk or reading the data from the magnetic disk according to the received control command, specify a data amount of object data of the data access process, calculate a cumulative value of the data amount of the object data from a start of an operation, and perform notification when the cumulative value is equal to or larger than a predetermined threshold.
The present disclosure includes apparatuses and methods for command queuing. A number of embodiments include receiving a queued command request at a memory system from a host, sending a command response from the memory system to the host that indicates the memory system is ready to receive a command in a command queue of the memory system, and receiving, in response to sending the command response, a command descriptor block for the command at the memory system from the host.
A memory system may include a memory device including a plurality of memory blocks, and a controller including a memory the controller being suitable for performing a command operation corresponding to a command received from a host, storing user data and metadata in the memory, and storing the user data and the metadata in at least one memory block among the memory blocks based on a command parameter included in the command.
In one embodiment of the present description, mirroring is provided for a pair of storage units in bidirectional synchronous mirror relationships, and a tertiary storage unit. The mirroring includes multi-target mirroring to write updates written to the first storage unit to both the second storage unit and to a third storage unit. Similarly, for updates written to the second storage unit, multi-target mirroring is employed to write those to both the first storage unit and to the third storage unit. Other aspects are described.
A method of operation of an automatic back-up system includes: providing a mobile device; coupling a removable media device to the mobile device; automatically launching an application on the mobile device; and backing-up user data selected by the application from the mobile device to the removable media device.
A memory device includes a plurality of memory components that stores data and a processor communicatively coupled to the plurality of memory components. The processor may receive a plurality of packets associated with a plurality of data operations, such that each of the plurality of packets includes a transaction window field indicating a type of memory component associated with a respective data operation of the respective packet. The processor may also perform the plurality of data operations in a first order based on the type of memory component indicated in the transaction window field of each of the plurality of packets.
A method for maintaining intelligent write ordering in an asynchronous data replication system is disclosed. In one embodiment, such a method includes performing the following, in order, for each extent of each rank of the primary storage device: (1) determining which primary volume the extent is associated with on the primary storage device; (2) if the primary volume that is associated with the extent is in a mirroring relationship with a corresponding secondary volume on the secondary storage device, scanning an out-of sync bitmap associated with the primary volume; and (3) sending, from the primary volume to the secondary volume, tracks in the extent having corresponding bits set in the out-of sync bitmap. A corresponding system and computer program product are also disclosed.
A storage system configured to mitigate the effect of a long latency tail in solid state drives. The system includes a host and a plurality of solid state drives. The host sets a latency threshold in each solid state drive. Each solid state drive may abort any read command when the execution time exceeds the latency threshold, and the host may then send the same read command to another solid state drive.
Provided herein may be a semiconductor memory device that may include a plurality of memory blocks configured to share bit lines and a common source line, a voltage generation circuit configured to apply an erase voltage to the common source line, and operation voltages to word lines and select lines of the plurality of memory blocks during an erase operation, a read and write circuit configured to check a program and erase status of an unselected memory block of the plurality of memory blocks during the erase operation, and a control logic configured to control the voltage generation circuit so that the operation voltages applied to select lines of a selected memory block are controlled in accordance with a result of checking the program and erase status of the unselected memory block during the erase operation.
An arithmetic processing device includes: a processor that issues a store command and a load command; and a memory coupled to the processor, wherein the processor: includes a cache memory which stores data to be stored corresponding to the store command and a buffer including entries which stores the data to be stored; searches, in a case where the load command is issued, the entries; and selects, when data to be loaded corresponding to the load command is present in the entries, the data to be loaded from the buffer.
Systems and methods for managing data structures in a flash memory. A library is provided that supports read requests and write requests. The library allows reads and writes to be implemented without requiring the client to understand how the data structure is implemented in the flash memory.
A touch panel device is provided which, even in cases in which a plurality of GUI parts are arranged in a limited space, enables operation of a GUI part in which, unlike a physical button, it is hard to distinguish the boundary by touch, without operational error, using a finger with a very large contact area in comparison to a touch pen. A touch panel device includes a rectangular screen having a detection region which detects contact, and a control section for generating a control signal in response to the contact detected by the detection region. The detection region has a shape that is inclined with respect to a side edge of the rectangular screen. In cases in which a body-part used for the contact is a finger of a user; when the user uses the right hand, the detection region has a shape that is inclined to the left side with respect to the side edge of the rectangular screen; and when the user uses the left hand, the detection region has a shape that is inclined to the right side with respect to the side edge of the rectangular screen.
Disclosed is a method, device, and system for entry of command using a touch sensitive surface. Instead of the device providing predefined locations for entering different commands, the device identifies the locations of three or more of the user's fingers or other objects. After determining the locations of the fingers, an entry mode allows for the entry of one or more commands based on an association between the commands and movements of different fingers and the type or direction of movement. The association may include a first command associated with the sliding motion of only a first finger in a first direction and a second different command associated with the sliding motion of only a second finger in a second direction. The first and second directions may be the same (i.e., within about 30°, within about 20°, within about 15°, within about 10°, or within about 5°) or different (e.g., angled by more than 30°, angled by more than 40°, or angled by more than 50°). Preferably the command entry mode is triggered by a trigger event. Preferably one of the fingers remain on the touch sensitive surface from the identification of the locations of the fingers through the entry of the command.
In a computer network and a method for displacement of an object within a computer network, the computer network has a first computer system with a first graphical user interface and a second computer system with a second graphical user interface. A selection view of the second graphical user interface can be presented on the first graphical user interface, and a target location can be selected in the selection view. An object on the first graphical user interface can be displaced onto the target location.
Disclosed are a method for controlling a terminal device, a terminal device and an electronic device. The method comprises: acquiring a first input; determining, in the locked state, a first instruction of the first instruction set corresponding to the first input, the first instruction being an unlocking instruction; controlling a switching from the locked state to the unlocked state according to the unlocking instruction; determining, in the unlocked state, a second instruction of the second instruction set corresponding to the first input; and responding to the second instruction. With the present invention, user operations are simplified, and intelligence of the terminal device is improved.
Techniques are disclosed for detecting, tracking, and recording data associated with physical manipulatives in a physical environment, and a corresponding set of virtual manipulatives in a virtual environment. Physical manipulative sensor devices may be configured to detect the position and/or movements of physical manipulatives within a physical environment, including simple or multi-step user interactions with physical manipulatives. The sensor devices and/or associated user computing devices may use the sensor data to determine updated positions, orientations, and configurations for one or more physical manipulatives within the physical environment, as well as defining relationships between sets of the physical manipulatives. Data identifying updated positions, orientations, configurations, and relationship of the physical manipulatives may be transmitted to associated user devices, and a corresponding virtual environment having virtual manipulatives may be output and updated via a graphical display screen to reflect the changes to the physical manipulatives within the physical environment.
A system that incorporates teachings of the subject disclosure may include, for example, receiving, prior to entering a screensaver mode of operation, a search criteria identifying a requested subject matter, wherein the search criteria is based on a last user-initiated search query to a web-based search engine. In response to entering the screensaver mode, the search criteria identifying the requested subject matter is automatically transmitted to a web browser. Image content referenced by a set of uniform resource locators based upon the search criteria is sequentially presented. In response to receiving user input, a user-selectable region is presented comprising a selectable element superimposed on the first image. Selection of the element causes a defined action generating an e-mail message having an attachment with content referenced by a link associated with the first image. Receiving user input from a second input device ceases presenting of the image. Other embodiments are disclosed.
In a mobile device, the text entered by users is analyzed to determine a set of responses commonly entered by users into text applications such as SMS applications in response to received messages. This set of responses is used to provide suggested responses to a user for a currently received message in a soft input panel based on the text of the currently received message. The suggested responses are provided before any characters are provided by the user. After the user provides one or more characters, the suggested responses in the soft input panel are updated. The number of suggested responses displayed to the user in the soft input panel is limited to a total confidence value to reduce user distraction and to allow for easier selection. An undo feature for inadvertent selections of suggested responses is also provided.
System (100) for enabling an interactive inspection of a region of interest (122) in a medical image (102), the system comprising display means (160) for displaying user interface elements (310, 320, 330) of actions associated with the interactive inspection of the region of interest and a processor (180) for executing one of the actions when a user selects an associated one of the user interface elements, the system further comprising establishing means (120) for establishing the region of interest in the medical image, determining means (140) for determining an anatomical property (142) of the region of interest in dependence on an image property of the region of interest, and the display means (160) being arranged for (i), in dependence on the anatomical property, establishing a display configuration (162) of the user interface elements, and (ii) displaying the user interface elements in accordance with the display configuration.
A transparent conductive oxide film for sensing deformation has a length, and generates a deformation amount when an external force is applied thereto, so as to change a resistance value of the transparent conductive oxide film. A ratio of the deformation amount to the length ranges from about 5×10−5 to about 3.5×10−4, and a rate of change of the resistance value ranges from about 0.01% to about 3%.
A capacitance sensing method includes generating a first set of currents by, for each transmit (TX) electrode of a set of TX electrodes, precharging a self capacitance of the TX electrode and a mutual capacitance between the TX electrode and a receive (RX) electrode of a set of RX electrodes by applying to the TX electrode a first excitation voltage corresponding to the TX electrode to induce a first current of the first set of currents, generating a second set of currents by, for each TX electrode, applying a reference voltage to the TX electrode to induce a second current of the second set of currents, and for each TX electrode, calculating a measure of the self capacitance of the TX electrode based on the second set of currents, and calculating a measure of the mutual capacitance between the TX electrode and each RX electrode based on the first set of currents.
The touch input device comprises a base including a metal composite; a first pattern groove formed concavely in one surface of the base, a second pattern groove formed concavely in the other surface of the base; a first sensing pattern disposed in the first pattern groove and including a conductive material; a second sensing pattern disposed in the second pattern groove and including a conductive material; and a wire connecting the first sensing pattern and the second sensing pattern to an integrated circuit.
A touch sensing structure including a transparent substrate and at least one touch sensing unit disposed on the transparent substrate is provided. Each touch sensing unit includes a first patterned electrode, a second patterned electrode, a conductive bridge and a patterned light-shielding layer. The second patterned electrode is isolated from the first patterned electrode and is separated into a first portion and a second portion by the first patterned electrode. A conductive bridge electrically connects the first portion and the second portion and is spatially separated from the first patterned electrode. The patterned light-shielding layer is disposed between the conductive bridge and the inner surface and at least partly overlaps the conductive bridge along a direction normal to the transparent substrate.
An optical system includes a first panel that includes a plurality of first electrodes; a second panel facing the first panel and that includes a plurality of second electrodes; and an optical conversion layer positioned between the first panel and the second panel that includes an optical conversion material. An electric field generated in the optical conversion layer by the plurality of first electrodes and the plurality of second electrodes in a multi-view mode generates a phase difference in the optical conversion layer based on a location of the optical conversion material. The plurality of second electrodes includes a plurality of sub electrodes and a common electrode, and the plurality of first electrodes and the common electrode forms a touch sensing capacitor to sense a touch in a touch mode.
A display device with a touch sensor having a display function and a touch sensor function is provided. The display device includes a first substrate including a pixel electrode; a first electrode along a first direction; and a second substrate including a second electrode that includes patterns of electrodes along a second direction crossing the first direction and that faces the first electrode and the pixel electrode, wherein upon the display function being activated, the pixel electrode is supplied with a pixel signal, and the second electrode is supplied with common voltage, and upon the touch sensor function being activated, the first electrode is applied with a first signal and the second electrode is configured to receive the first signal to be a second signal as a touch detecting signal.
An input device includes a plate body, a first sensing element, a second sensing element and a control unit. The first sensing element and the second sensing element are respectively located at two ends of a diagonal of the plate body for sensing a first image and a second image corresponding to a touching object. The control unit is electrically connected with the first sensing element and the second sensing element. The control unit acquires a position characteristic value according to the first image and acquires an auxiliary position characteristic value according to the second image. Moreover, the control units recognizes a position of the touching object according to the position characteristic value and the auxiliary position characteristic value, and generates an output signal according to the position of the touching object.
The disclosure provides a shift register unit, a shift register, a driving method and an array substrate. The shift register unit may comprise a touch-controlled circuit comprising a touch-controlled turning-on module and a touch-controlled turning-off module, wherein a control of the touch-controlled turning-on module is connected to a touch-controlled turning-on signal, an input is connected to a negative power supply signal, and an output is connected to an output terminal, and the touch-controlled turning-on signal is a pulse signal at a start of a touch controlling period; and a control of the touch-controlled turning-off module is connected to a touch-controlled turning-off signal, an input of the touch-controlled turning-off module is connected to a positive power supply signal, and an output of the touch-controlled turning-off module is connected to the output terminal, wherein the touch-controlled turning-off signal is a pulse signal at an end of the touch controlling period.
A touch display device includes a thin-film transistor (TFT) substrate and a light-emitting element. The TFT substrate has a substrate and a TFT structure. The TFT structure is disposed on the substrate and includes a driving transistor. The light-emitting element is disposed on the TFT structure and has a first end electrode, a light-emitting layer and a second end electrode. The first end electrode is electrically connected with the driving transistor. The light-emitting layer is disposed between the first end electrode and the second end electrode. The first end electrode or the second end electrode is a touch sensing electrode of the touch display device.
Techniques for a handheld input apparatus are described. Generally, a handheld input apparatus can be used to provide input to various types of devices. According to various embodiments, a described handheld input apparatus includes a strain sensor for determining different load forces on a tip of the apparatus. According to various embodiments, a described handheld input apparatus includes components for determining an angular and/or rotational orientation of the apparatus relative to an input surface. Based on the different determined forces and/or orientation information, input characteristics of a handheld input apparatus can be controlled.
A core information receiving section of an information processing device receives information related to the state of a core from a first block of a block set assembled by a user. A structure analyzing section identifies the shape, posture, and position of the block set on the basis of an image photographed by a camera and the information related to the state of the core. An information processing section performs predetermined information processing according to the shape, posture, and position of the block set or an operation on an input device by the user. A display processing section generates an image to be displayed as a result of the information processing, and outputs the image to a display device. A driving control section transmits a signal for controlling the operation of the block set.
An information processing system includes a pointer to designate a position in a three-dimensional space relative to a display, and a first image capture device to capture the position designated by the pointer relative to the display as a virtual image of the pointer. In an example embodiment, a parameter calculator is included to calculate either a first or second parameter. The first parameter is used for transforming coordinates of the designated position in the virtual image to world coordinates, by touching the display. The second parameter is used for transforming coordinates of the designated position in the virtual image when the pointer is operated above the display, without touching the display. Finally, a world coordinate calculator is included to transform the coordinates of the position designated by the pointer in the virtual image to the world coordinates by applying the first parameter or the second parameter.
Embodiments disclosed herein describe systems and methods for a user interface allowing a user to input characters, numbers, commands, symbols, etc. with a single hand. Embodiments of the user interface may be a hardware device configured to conform to a user's grip, wherein the device is configured to determine pressure caused by flexions of each of the digits on the user's hand.
An input device includes: an input unit; a supporting unit supporting the input unit; a first actuator; a second actuator; and a magnetic path forming body forming a magnetic circuit that guides a magnetic flux generated by a first magnetic pole forming unit to pass through a second coil and that also guides a magnetic flux generated by a second magnetic pole forming unit to pass through a first coil. A magnetic resistance to be a resistance in the magnetic circuit is disposed at a middle location along a first connection part that connects an end of a first coil side part to an end of a second coil side part, and a second connection part that connects the other end of the first coil side part to the other end of the second coil side part.
A handheld electronic device includes a keypad having a plurality of keys and a selection member; a display component; and a processor cooperating with the keypad and the display component to provide a display at the display component. The display includes a first representation of a plurality of the keys, and at least one of: (a) a second representation of an activated one of the input members, (b) a third representation including a plurality of diacritics disposed about an activated one of the input members, and (c) a fourth representation including a plurality of diacritics disposed about an activated one of the input members, and a direction of selection between the activated one of the input members and one of the diacritics. The processor cooperates with the selection member to adjust the direction of selection, and select one of the diacritics for display by the display component.
Aspects of the present invention disclose a method, computer program product, and system for interpreting text entry for an input/output device. The method includes one or more processors receiving input from a set of sensors. The sensors are grouped in segments corresponding to a finger of a user. The method further includes one or more processors identifying input by a user of a gesture into a sensor of the set of sensors. The method further includes one or more sensors determining a first alphanumeric character that corresponds to the identified gesture input by the user. The method further includes one or more processes generating an input stream of alphanumeric characters, the input stream comprising the determined first alphanumeric character that corresponds to the identified gesture and one or more additional alphanumeric characters determined from identified gestures input by the user.
This disclosure provides a pose- or gesture-based recognition system that processes images of the human hand, downconverts degrees of freedom of the human hand to lower-dimensional space, and then maps the downconverted space to a character set. In one embodiment, the system is implemented in a smart phone or as a computer-input device that uses a virtual keyboard. As the user moves his or her hand, the smart phone or computer provides simulated vocal feedback, permitting the user to adjust hand position or motion to arrive at any desired character; this is particularly useful for embodiments which use a phonetic character set. Software that performs character selection can be implemented in a manner that is language/region agnostic, with a contextual dictionary being used to interpret a phonetic character set according to a specific language or region.
The invention relates to an actuator for a tactile interface module (1) with haptic feedback, to be connected to a tactile surface (3) that can detect pressure by a user and can generate haptic feedback according to a detected pressure, and comprising: a frame (11); a mobile core (13) cooperating with the frame (11), to be movably driven between end positions in order to generate the haptic feedback; electromagnetic actuating means (15, 17) for movably driving the mobile core (13); fixing elements (23) for connecting the actuator to the tactile surface (3); and elastic means (21) defining an idle position of the mobile core (13) in the absence of the actuating means (15, 17) driving the core, characterized in that the elastic means (21) are arranged around the fixing elements (23).
A head-mounted display (HMD) is provided, including the following: a transceiver; a plurality of antenna arrays; a selector configured to determine which of the antenna arrays is active for wireless communication of data by the transceiver; a display configured to render video data received by the transceiver through the active antenna array.
Rich media content, such as advertising, can be provided for display on a two-dimensional screen to give the user an impression that the screen is a window into a three-dimensional (3D) environment. For example, the user's head can be tracked and the graphical elements of the advertisement can be rendered based on the position of the user's head relative to a computing device such that the graphical elements appear to have 3D depth. A full or substantially full 3D view of a product can be presented. Additional information, such as a product description, features, pricing, user ratings, user reviews, among others, can also be displayed based on the position of the user's head relative to the computing device. A 3D video can also be presented, and a user can view different perspectives of the video based on the position of the user's head with respect to the computing device.
The embodiments herein relate to a method in a first network unit (101) for handling states in a network (100). The first network unit (101) is adapted to supervise power in the network (100). The first network unit (101) receives a work-load report from one or more of a plurality of second network units (105). The second network units (105) consume power. When the second network units (105) are awake and the workload is below a threshold, the first network unit (101) transmits a sleep request to at least one of the second network units (105) to change from awake to sleep. When the plurality of second network units (105) are asleep and the workload has reached or is above the threshold, the first network unit (101) transmits a wakeup request to at least one of the second network units (105) to change from sleep to awake.
An information handling system includes a power supply coupled to a processor that includes a plurality of cores. A power system controller is coupled to the power supply and the processor. The power system controller may set each of the plurality of cores to a performance state that is below a highest performance state. The power system controller may then determine whether the power supplied from the power supply to the processor during operation is sufficient to operate each of the plurality of cores at the highest performance state. In response to the power being insufficient to operate each of the plurality of cores at the highest performance state, the power system controller may control the plurality of cores such that a subset operate at the highest performance state and the remainder operate at a performance state that is lower than the highest performance state.
A chassis for a storage system contains a digital chamber that houses conventional electronic components and a thermal chamber that houses non-volatile solid state memory such as flash memory. A temperature regulating system monitors temperature within the digital chamber to keep the components therein below their maximum junction temperature. The temperature regulating system tightly regulates the temperature of solid state memory chips to within a nominal operating temperature range selected to extend the lifetime and/or improve the endurance and reliability of the solid state memory. The temperature regulating system may regulate different memory chips to different nominal temperatures based on the operations being performed and lifetime factors for the memory chips including current health and prior use.
A vehicle adapter configured to be mounted to a vehicle. The vehicle adapter includes a body sized and shaped to receive and hold a portable communications device, the body including a surface configured to press against the portable communications device. The vehicle adapter further includes a cooling system coupled to the body, the cooling system including a conduit configured to deliver a coolant to an internal channel of the portable communications device. The conduit defines a projection sized and shaped to press against and open a valve on the portable communications device when the portable communications device is received into the vehicle adapter.
An arrangement for a computer system includes a heat-producing expansion card and a cooling device. The cooling device has at least one fan and a hollow body with a first opening and a second opening to cool the expansion card. The hollow body is arranged with the first opening on the expansion card. The at least one fan is arranged on the hollow body in a region of the second opening or is at least partly surrounded by the hollow body by the second opening. The at least one fan produces a flow of air through the hollow body to cool the expansion card.
An externally mounted internal component retention device includes a base. A first chassis securing member extends from the base. The first chassis securing member is configured to engage a chassis to resist movement of the base relative to the chassis when the base is positioned immediately adjacent to an external mount surface on the chassis. A first internal component engagement member also extends from the base. The first internal component engagement member is configured to extend through an engagement member chassis aperture defined by the chassis and engage an internal component that is housed in the chassis to resist movement of the internal component relative to the chassis when the base is positioned immediately adjacent the external mount surface on the chassis.
The present invention provides an electronic apparatus for reducing the load on mechanism parts and thickness, including a main unit chassis having keytops; a display chassis pivotably connected with the main unit chassis by hinge mechanisms; rubber domes urging the keytops in a direction to cause the keytops to project from an upper surface; an X slider sliding in the main unit chassis in synchronization with the pivoting movements of the main unit chassis and the display chassis; a key depressing mechanism and a link mechanism, causing the keytops to retract from the upper surface when the X slider slides in one direction, and causing the keytops to project from the upper surface when the X slider slides in the opposite direction; and an auxiliary elastic member urging the X slider in a direction to cause the X slider to slide in the one direction.
Provided is a display device including: a display panel configured to generate an image; a touch screen panel formed on the display panel; and a window formed on the touch screen panel and extending over a side edge of the touch screen panel to facilitate a covering and sealing of the touch screen panel. According to the present invention, by providing a display device having a laminated structure in which the edge of the touch screen panel is sealed so as to prevent moisture from permeating from the outside, occurrence of product defects may be prevented.
A detachable head-mounted-display strap-interface apparatus may include (1) a strap that includes an electrical accessory that necessitates an electrical connection to a head-mounted display and (2) a mount coupled to the strap that includes (a) an interface that is mateable and demateable to an opposing interface of the head-mounted display, (b) an electrical connector that is configured to provide the electrical connection from the electrical accessory to the head-mounted display when contacting an opposing electrical connector of the head-mounted display, and (c) a latch that couples, in a first orientation, the interface and the opposing interface of the head-mounted display and enables, in a second orientation, the interface to be decoupled from the opposing interface of the head-mounted display and the electrical connector to be disconnected from the opposing electrical connector. Various other detachable head-mounted-display strap-interface apparatus, devices, systems, and methods are also disclosed.
A dual-screen electronic device includes a first display module, a second display module, and at least one connector. The first display module is rotatably connected with the second display module by the at least one connector to enable the dual-screen electronic device to switch between an opened state and a closed state. In the opened state, the first screen and the second screen are in a single plane to cooperatively form an extended screen. In the closed state, the first display module and the second display module are folded together, and the first screen laminates to the second screen.
In an embodiment, a foldable device having a sensor is described. In an embodiment, the device comprises: A folding area, wherein the folding area is configured to rotate according to an axis of rotation caused by folding the device, causing deformation of the folding area. The folding area comprises: a layer of strain sensitive material having particles, wherein conductivity of the strain sensitive material is configured to change when the layer experiences the deformation. The folding area comprises a layer of conductor lines configured to detect the change of the conductivity of the strain sensitive material, wherein the layer of the conductor lines includes a plurality of contacting points with the strain sensitive material.
A vehicle pedal with a contacting sensor that comprises a pedal arm coupled to and rotatable relative to a pedal housing. A rotor includes a first end coupled to the pedal arm and an opposed end with contactors abutting and adapted to slide against a resistive element in response to the rotation of the pedal arm. A head on the rotor includes means for preventing the over-deflection of the contactors. In one embodiment, the means for preventing the over-deflection of the contactors comprises an extension on the head of the rotor that defines a stop limiting the deflection of the contactors. In another embodiment, the means for preventing the over-deflection of the contactors comprises the combination of a tab on the head of the rotor and a wall in the interior of the pedal housing. The tab abuts against the wall and prevents the movement of the rotor in the direction of the resistive element.
To ensure the electricity storage amount of a power storage device in preparation for the peak period of power consumption when supplying power to a plurality of devices, a power management apparatus includes a controller that controls the plurality of devices that receive a distribution of total power supplied from the power storage device and another power supply, an acquirer that acquires the remaining electric energy of the power storage device, and a determiner that determines whether the remaining electric energy of the power storage device is not more than a first predetermined value. If the remaining electric energy of the power storage device is not more than the first predetermined value, the controller controls the plurality of devices such that the power from the other power supply is distributed to the power storage device.
Disclosed is a voltage regulator. The voltage regulator includes a reference voltage circuit, a noise cancellation circuit, an error amplifier, a pass transistor and a voltage divider. The voltage regulator can cancel the noise generated by the reference voltage circuit and the error amplifier, and also can improve its Power Supply Rejection Ratio (PSRR).
Systems and method are provided for controlling a vehicle. In one embodiment, a vehicle dimension prediction method includes producing a set of simulated observed dimensions based a set of known vehicle dimensions and training a machine learning module based on the set of simulated observed dimensions and the set of known vehicle dimensions. The method further includes acquiring sensor data associated with a first vehicle observed by a sensor system of an autonomous vehicle, determining observed dimensions of the first vehicle based on the acquired sensor data, and determining, with a processor, predicted actual dimensions of the first vehicle by applying the plurality of observed dimensions to the machine learning model.
Systems and methods are provided for controlling a vehicle. In one embodiment, a method includes receiving vehicle and object environment data. A search graph is generated based upon the received data. The search graph contains a grid of points for locating objects and is used to determine a desired trajectory for the vehicle.
A system 10 for controlling operation of a vehicle 12 in a defined area 14 includes a perimeter 16 defining a boundary of the defined area 14. A user interface 18 is provided for at least one of controlling and monitoring movement of the vehicle 12 as it traverses the area 14 and monitoring the location of the vehicle 12 relative to the perimeter 16. The system 10 further includes a controller 26 to which the vehicle 12 is responsive, the vehicle 12 having a plurality of modes of operation, one of which is an autonomous mode and another of which is an operator controlled mode. The controller 26 is operative, when the vehicle 12 is operating in the autonomous mode and the vehicle comes within a predetermined range of the perimeter, to inhibit the vehicle 12 from crossing the perimeter 16 and, when the vehicle 12 is operating in the operator controlled mode or is converted from autonomous mode to operator controlled mode, to permit the vehicle 12 to cross the perimeter 16 under control of the operator.
A numerical controller of the invention includes: an acceleration setting data storage unit for storing acceleration setting data where an acceleration/deceleration setting of an axis of a target machine to be controlled is associated with an application condition including at least a tool number; an execution acceleration/deceleration setting storage unit for storing the acceleration/deceleration setting used when a control of the axis is executed; an acceleration/deceleration control unit for performing an acceleration/deceleration control process on the axis on the basis of the acceleration/deceleration setting set in the execution acceleration/deceleration setting storage unit; and an acceleration/deceleration setting unit for setting the acceleration/deceleration setting of the acceleration setting data where a tool number commanded in a tool selection command of a block read from a machining program satisfies the application condition in the execution acceleration/deceleration setting storage unit.
What is disclosed is a system for controlling a process, where the process is implemented by a machine system. The system includes a user interface device and a first transceiver coupled to the user interface device. The first transceiver is configured to receive communications from the user interface device and transfer the communications. The system also includes a second transceiver in communication with the first transceiver and configured to transfer power to the first transceiver, receive the communications from the first transceiver, and transfer the communications to control the process implemented by the machine system.
A method for automated part probing using a physical machine defining a physical working volume, the method including: generating a virtual model based on a virtual part design received from a user account, the virtual model comprising a virtual part model, based on the virtual part design, virtually fixed to a virtual fixture plate arranged within a virtual working volume representative of the physical working volume; generating a probing routine based on the virtual model; sending the probing routine to the machine; receiving probe outputs from the machine; and validating the virtual model based on the probe outputs.
In this machining method, in which a rotary tool is moved relative to a workpiece and/or the workpiece is moved relative to the rotary tool so as to machine a curved surface on said workpiece, rotation in the direction of said curved surface is added to the workpiece such that the positions of reversal marks left on the curved surface per tool path are dispersed in the direction of said rotation.
A building controller for controlling one or more building control components in a building, wherein the building controller is configured for bidirectional communication via a communication network between the building controller and the one or more building control components. The building controller can include a housing, a control unit, and a display unit. The control unit can execute an operating system and a building control application program having a control algorithm. The display unit may be configured to display at least one screen that facilitates user monitoring of diagnostic messages of the operating system of the control unit. Alternatively, or in addition, the display unit can be configured to display a screen to facilitate user entry of operating system parameters and/or a screen to facilitate entry of operating system commands for execution on by the control unit.
Disclosed are methods and apparatuses for creating a prototype. The methods include at least: receiving a generated prototype, sensing a trigger on the received prototype, generating a message comprising an identifier for identifying an external terminal according to the sensing of the trigger, determining, when a first message and a second message of a plurality of generated messages are generated sequentially before an expiry of a preset message transmission time, the second message representing a transmission message, providing to a bridge application matched to the identifier, the generated message, after the expiry of the preset message transmission time, generating a control command based on the generated message, using the bridge application, and transmitting the generated control command to the external terminal, wherein the control command includes a command for enabling the external terminal to output a preset response in response to the control command.
A method of controlling devices connected to a controller includes receiving, from a server, a service rule including a trigger condition and a device executing action which is an action to be performed by one of the devices according to whether the trigger condition is satisfied, selecting one of the devices connected to the controller based on the received service rule, modifying the received service rule to control the selected device, and controlling the selected device according to the modified service rule.
An end member which is disposed in an end portion of a columnar rotating body mounted on an image forming apparatus main body, comprises: a tubular bearing member; and a shaft member held by the bearing member, wherein the shaft member includes a rotating shaft which is disposed in the bearing member, and moves in an axial direction, and a rotating force receiving member which is provided with an engagement hook that is disposed in one end portion of the rotating shaft, swings with respect to an axis of the rotating shaft, and is engaged with a driving shaft of the image forming apparatus main body.
A fixing device includes a fixingmember, a separation member, a movement mechanism, and a pressing member. The fixing member rotates around a rotation axis extended in a rotation axis direction and fixes a toner image on a recording medium. The separation member comes in contact with the fixing member and separates the recording medium from the fixing member. The movement mechanism moves the separation member in the rotation axis direction and within a movement area. The pressing member presses the separation member against the fixing member. A pressing load of the separation member against the fixing member in a case where the separation member is located at a central position of the movement area is lower than a pressing load of the separation member against the fixing member in a case where the separation member is located at both end positions of the movement area.
An image forming apparatus includes a fixing device that forms a fixing nip by a pressure rotator and a fixing belt that rotates while contacting the pressure rotator, and includes: a nip former that is disposed inside the fixing belt and that forms the fixing nip between the pressure rotator and the fixing belt; and a lubricant supplier that forms a lubricant-retaining space at a position between an inner surface of the fixing belt and the nip former on an upstream side of the nip former in a rotation direction of the fixing belt, wherein the lubricant supplier varies a volume of the lubricant-retaining space.
A toner comprising a toner particle containing a binder resin, a wax, and inorganic fine particles, wherein the binder resin contains a crystalline polyester resin and an amorphous polyester resin, and, in a cross section of the toner particle, when Sc represents an area taken up by the crystalline polyester resin and S1 represents an area taken up by the inorganic fine particles that are present in the crystalline polyester resin portion, Sc and S1 satisfy the relationship S1/Sc≥0.2.
A lithographic projection apparatus is disclosed for use with an immersion liquid positioned between the projection system and a substrate. Several methods and mechanism are disclosed to protect components of the projection system, substrate table and a liquid confinement system. These include providing a protective coating on a final element of the projection system as well as providing one or more sacrificial bodies upstream of the components. A two component final optical element of CaF2 is also disclosed.
The present disclosure provides a method. The method includes forming a resist layer on a patterned substrate; collecting first overlay data from the patterned substrate; determining an overlay compensation based on mapping of second overlay data from an integrated circuit (IC) pattern to the first overlay data from the patterned substrate; performing a compensation process to a lithography system according to the overlay compensation; and thereafter performing a lithography exposing process to the resist layer by the lithography system, thereby imaging the IC pattern to the resist layer.
The present disclosure relates to techniques for supplying different chemical products to process tools of a manufacturing environment used for micro-processing substrates. To this end, the various types of chemical products may be supplied by providing mobile dispense devices having incorporated therein any required hardware components for dispensing a chemical product. Moreover, the mobile dispense devices are appropriately equipped so as to enable coupling to and removal from respective process tools, such as wafer tracks of modern lithography tools. Due to the mobile or modular nature of the respective chemical product lines, a significant reduction of cost of ownership, increased tool availability and reduced investment costs may be achieved compared to conventional regimes.
A glass substrate for a mask blank includes a rectangular-shaped main surface on which a film having a circuit pattern is to be formed. The main surface includes a quadrangular peripheral frame and a square-shaped center area defined by excluding the frame. The center area has a longitudinal length of 142 mm and a lateral length of 142 mm. A surface morphology of the center area is expressed by the following formulas. A flatness of a sum of compositing all of aklPk(x)Pl(y) is less than or equal to 20 nm when a sum of k and l is greater than or equal to 3 and less than or equal to 9. The flatness is less than or equal to 20 nm when a sum of k and l is greater than or equal to 10 and less than or equal to 30. { z ( x , y ) = ∑ k = 0 N 1 ∑ l = 0 N 2 a kl P k ( x ) P l ( y ) P k ( x ) = 1 2 k k ! d k dx k [ ( x 2 - 1 ) k ] P l ( y ) = 1 2 i l ! d l dy l [ ( y 2 - 1 ) l ]
A method, an apparatus, and a non-transitory computer readable medium for full chip mask pattern generation include: generating, by a processor, an initial mask image from target polygons, performing, by the processor, a global image based full chip optimization of the initial mask image to generate new mask pattern polygons, wherein the global image based full chip optimization co-optimizes main feature polygons and SRAF image pixels, determining performance index information based on the global image based full chip optimization, wherein the performance index information comprises data for assisting a global polygon optimization, generating a mask based on the global polygon optimization of the new mask pattern polygons using the performance index information, and generating optimized mask patterns based on a localized polygon optimization of the mask.
A halftone phase shift film is formed on a transparent substrate by reactive sputtering using a silicon target, an inert gas, and a nitrogen-containing reactive gas. A hysteresis curve is drawn by sweeping the flow rate of the reactive gas, and plotting the sputtering voltage or current during the sweep versus the flow rate of the reactive gas. In a transition mode sputtering step of sputtering in a region corresponding to a range from more than the lower limit of reactive gas flow rate providing the hysteresis to less than the upper limit, the target power, the inert gas flow rate and/or the reactive gas flow rate is increased or decreased continuously or stepwise.
A heat transport device having a hydraulic fluid includes: an evaporating unit configured to receive heat from outside and gasify the hydraulic fluid into a gas; a condensing unit configured to liquefy the gas into the hydraulic fluid; and first and second fluid pipes respectively connected to the evaporating unit. The first and second fluid pipes forming an annular flow path with the evaporating unit and the condensing unit. The evaporating unit includes a first porous body which is permeated with the hydraulic fluid by capillary force, and a heat receiving unit configured to receive heat from outside. The heat receiving unit has an accommodation area where the first porous body moves in a first direction. The first fluid pipe is connected to one end side in the first direction of the accommodation area. The second fluid pipe is connected to the other end side of the accommodation area.
A camera slider has a base and a tubular hollow arm pivotally attached to the base. A counterweight carriage is supported on the arm on carriage rollers. An electric drive motor moves the counterweight carriage linearly on top of the arm. A slider counterweight is movable between ends of the arm to maintain the arm in balance. A telescoping locking strut allows the arm to be held at a wide range of elevation angles.
A camera includes an image-capturing part, a plurality of lamp cups, and a plurality of lighting parts disposed in the lamp cups correspondingly. The lamp cup includes two reflection members oppositely disposed. One of the reflection members thereon defines a light source position and has a first reflecting surface. The other reflection member has a second reflecting surface toward the light source position, and a third reflecting surface, close to the second reflecting surface and toward the first reflecting surface. The first reflecting surface and the third reflecting surface form a light-out opening therebetween. Some light travels from the light source position to be reflected by the second reflecting surface and the first reflecting surface in order to emit out of the light-out opening. Some light travels from the light source position to be reflected by the third reflecting surface to emit out of the light-out opening.
The present invention provides an optical modulator including a substrate and a phase modulation portion on the substrate. The phase modulation portion includes an optical waveguide comprised of a first clad layer, a semiconductor layer that is laminated on the first clad layer and has a refraction index higher than the first clad layer and a second clad layer that is laminated on the semiconductor layer and has a refraction index lower than the semiconductor layer, a first traveling wave electrode, and a second traveling wave electrode. The semiconductor layer includes a rib that is formed in the optical waveguide in an optical axis direction and is a core of the optical waveguide, a first slab that is formed in the optical axis direction in one side of the rib, a second slab that is formed in the optical axis direction in the other side of the rib, a third slab that is formed in the first slab in the optical axis direction at the opposite side to the rib, and a fourth slab that is formed in the second slab in the optical axis direction at the opposite side to the rib. The first slab is formed to be thinner than the rib and the third slab, and the second slab is formed to be thinner than the rib and the fourth slab.
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
A curved display device including a first substrate, a thin film transistor (TFT) disposed on the first substrate, a pixel electrode connected to the TFT, a second substrate overlapping the first substrate, a liquid crystal layer disposed between the first and the second substrates, and a common electrode disposed between the second substrate and the liquid crystal layer, in which the pixel electrode includes a cross-shaped stem portion having a horizontal stem portion, a vertical stem portion, and a plurality of fine branches extending from the cross-shaped stem portion, at least one of the fine branches includes a first portion and a second portion having a width greater than that of the first portion, and an extending line from a boundary between the first portion and the second portion is sloped at an angle in a range of −10 degrees to +10 degrees with respect to the vertical stem portion.
A device for eliminating spliced borders/bezels of a liquid crystal display screen by means of edge display, which comprises an edge display unit is arranged on the spliced border/bezel of the liquid crystal display screen, a dodging layer is arranged on the edge display unit to serve as a display surface of the edge display unit, and the dodging layer and a displayable area of the liquid crystal display screen are synthesized and fused to display an original input video image. The edge display unit is fused with the video image of the displayable area of the liquid crystal display screen in an area source mode, and the edge display unit is infused into the liquid crystal display video image well through converting an LED point light source in edge display into an area source; a large view angle of 75 degrees (an included angle with the normal of the liquid crystal display screen) is allowed, that is, the spliced liquid crystal display screen is watched within the range of 150 degrees, and the spliced image is made to tend to be complete after video images originally lost are restored to be displayed; the overall seamless display screen is formed, the technical requirements for transporting, using and splicing are greatly reduced, and application of the seamless display screen is expanded.
A measurement method for a liquid crystal azimuthal angle of a liquid crystal panel and a measurement device are disclosed. The liquid crystal panel includes an upper polarization film, a lower polarization film disposed oppositely and liquid crystal molecules disposed there between. The method includes: when absorption axes of the upper and the lower polarization films are disposed as 0 degree and 90 degrees with respect to a horizontal direction, and are perpendicular to each other, measuring a first transmittance; when absorption axes of the upper and the lower polarization films are disposed as 45 degrees and 135 degrees with respect to the horizontal direction, and are perpendicular to each other, measuring a second transmittance; calculating to obtain the liquid crystal azimuthal angle of the liquid crystal panel according to the first transmittance and second transmittance. The present invention can measure the liquid crystal azimuthal angle quickly, simply, and effectively.
An apparatus is for ascertaining and outputting a type of spectacle lens suitable for a spectacle wearer with a visual characteristics providing device, for providing visual characteristics of the spectacle wearer, a needs providing device, for providing individual needs of the spectacle wearer, a spectacle lens type providing device, for providing a plurality of types of spectacle lenses having predetermined characteristics, a desired characteristics ascertaining device, for ascertaining desired characteristics of a type of spectacle lens using the provided visual characteristics and the provided individual needs of the spectacle wearer, an assigning device, for assigning at least one type of spectacle lens from among the plurality of types of spectacle lenses to the desired characteristics, on the basis of predetermined assignment rules, and a spectacle lens type outputting device, for outputting the at least one assigned type of spectacle lens. A method is for ascertaining and outputting a type of spectacle lens suitable for a spectacle wearer and also a computer program is for carrying out the method.
The invention describes a focal length extender for a telescopic imaging system with interchangeable viewing eyepieces, including a cylindrical housing, which has a first and a second stop plane which are perpendicular to its cylinder axis in the direction of the light with associated connecting elements to the telescope body and for interchangeable viewing eyepieces and in which the housing has a relay lens arranged between the first stop plane and the second stop plane, wherein the relay lens is divided in two and consists of a first positive, neutral or negative lens element and a further negative lens element, wherein between the first and the further lens element, a beam splitter surface is arranged downstream at an angle to the optical axis of the imaging system and the first and further lens element together with the distance therebetween has an overall negative refractive power.
There is provided a display control device capable of ensuring the user's field of vision while keeping the user safe when the user is using a see-through head-mounted display, the display control device including: a situation acquisition unit configured to acquire information about a situation where a see-through display is being used, and a display control unit configured to perform display control on the see-through display using the information acquired by the situation acquisition unit so that a display of the information on the see-through display gradually becomes clearly visible.
A head mounted display is disclosed. More particularly, a head mounted display including one or more projection light sources, one or more eye-tracking light sources, a polarizing beam splitter, and a second polarizing beam splitter is disclosed. Light from the one or more projection light sources and the one or more projection light sources and the one or more eye-tracking light sources are both at least partially reflected by the polarizing beam splitter. An optical path between the polarizing beam splitter and the second polarizing beam splitter passes through air. A head mounted display that utilizes polarizing beam splitters having certain reflection bandedges over a range of incidence angles is disclosed.
An eyepiece for a head wearable display includes a curved lightguide component, a curved see-through component, an output coupler, and a prescription layer. The curved lightguide component guides display light received at an input region and releases the display light along an eye-ward direction in a viewing region. The output coupler is disposed at the viewing region to redirect the display light towards the eye-ward direction for output from the curved lightguide component. The output coupler is at least partially transmissive to ambient light incident through a world-facing side such that the viewing region is see-through. The curved see-through component is mated to the world-facing side of the curved lightguide component. The prescription layer has a first side mated to an eye-facing side of the curved lightguide component and a second side having a curvature that introduces prescriptive lensing to both the ambient light and the display light.
An optical assembly (1) includes an optical element (2), a mount (3) configured to hold the optical element (2), and a plurality of fastening elements (12) with fastening areas (14) configured to fasten the optical element (2) to the mount (3). The fastening elements (12) bridge an interstice (11) between the optical element (2) and the mount (3), and a purge device (15) produces at least one purge gas flow (16) in the region of the optical element (2) such that the purge gas flow flows around the fastening areas (14) of the fastening elements (12).
Disclosed is a manufacturing method for a wavelength conversion device, comprising: preparing a plurality of wavelength conversion modules, each wavelength conversion module comprising a ceramic substrate, a reflecting layer and a fluorescent powder layer, said layers being stacked sequentially and formed into one piece; installing and fixing the plurality of wavelength conversion modules on one surface of a base substrate. By arranging different fluorescent powders respectively on the different wavelength conversion modules, a plurality of wavelength conversion modules can be produced separately at the same time, thereby significantly shortening the production cycle. Each such module is produced independently and is thus not subject to the restrictions of the characteristics of other fluorescent powders. This is beneficial for the optimization of the various processes, and a wavelength conversion device having optimal performance is thereby obtained.
A method (200) is proposed for furnishing a digital resulting image, using a microscope system (1) that comprises means (R, L, 41) for furnishing microscopic images at different numerical apertures as well as a digital image capture unit (50). The method encompasses: capturing by means of the digital image capture unit (50), in the form of digital individual images, at least two microscopic images at different numerical apertures; and comparing respective mutually corresponding image regions of the digital individual images to one another in terms of their image sharpness, the image regions of the digital individual images having the greatest image sharpness being in each case combined to yield the digital resulting image.
A zoom lens including a first lens group, a second lens group, and a third lens group is provided. The first lens group is disposed between an object side and an image side and has at least one aspheric surface. The second lens group has a positive refractive power and is disposed between the first lens group and the image side. The third lens group has a positive refractive power and is disposed between the second lens group and the image side. The third lens group has at least one aspheric surface. The third lens group is suitable to move relative to the second lens group for focusing.
A fiber optic drop terminal assembly includes a housing, a spool and a fiber optic distribution cable. The housing has a first exterior surface and an oppositely disposed second exterior surface. A plurality of ruggedized adapters is mounted on the first exterior surface of the housing. The ruggedized adapters include a first port accessible from outside the housing and a second port accessible from inside the housing. The spool is engaged with the second exterior surface and includes a drum portion. The fiber distribution cable is coiled around the drum portion. The distribution cable includes a first end and an oppositely disposed second end. The second end is disposed inside the housing.
Systems and methods for increasing dynamic contrast in a liquid crystal display (LCD) may include a segmented backlight that may include one or more segments and one or more sets of light emitting diodes (LEDs). Each set of LEDs may be configured to illuminate a corresponding segment and each segment may include a notch(es) configured as a light barrier to reduce light leakage to non-adjacent segments. The notch(es) may be of variable length, depth, and width and may be three-dimensional, having a width the varies along the depth and length of the notch and a depth that varies along the width and length of the notch. In some embodiments, the notch(es) may be reflective, some degree of opaque, and/or blackened.
An object is to solve the problems which can be peculiarly generated in a coating-type optical film, and provide an optical film which hardly causes deterioration in optical performance over time. A display device equipped with the optical film, and a process for producing the optical film are also provided. There is provided a polarizing plate having a diffusion preventing layer A having a thickness of 0.05 μm to 3 μm, a polarizing film containing a polymer of a polymerizable liquid crystal and a dichroic coloring matter, and a diffusion preventing layer B having a thickness of 0.05 μm to 3 μm, in this order.
Provided is a near-infrared reflective film that suppresses reflection peaks such as ripples that can arise in the visible region and shows an excellent reflection peak in the near-infrared region; the near-infrared reflective film having a support and a dielectric multilayer film disposed on the support, in which a high-refractive index layer and a low-refractive index layer are alternately layered, wherein any of the high-refractive index layer and the low-refractive index layer adjacent to said high-refractive index layer satisfy predetermined conditions.
According to an embodiment, a lens device includes a filter, an entire area of which transmits light of a common color. The filter includes a first filter region and a second filter region. The first filter region transmits light that is a first combination of colors out of colors of light to be received by an image sensor. The second filter region transmits light that is a second combination of colors of the colors of the light to be received by the image sensor. The first and second combinations of colors each include the common color.
A dielectric mirror includes a coating having alternating high and low index layers. The mirror coating has no metallic reflective layer of Al or Ag in certain example embodiments, and may have film side and/or glass side visible reflection of from about 50-90% (more preferably from about 60-80% and most preferably from about 65-75%) and visible transmission of from about 10-50% (more preferably from about 10-40% or 20-40%) in certain example embodiments.
A projection lens included in a projector using laser beams as a light source is provided, the laser beams including as the light source, first blue laser light beams, second blue laser beams, first green laser beams, second green laser beams, first red laser beams, and second red laser beams, which are different in wavelength range. The projection lens has a relative maximum value of a transmittance on an optical axis between a wavelength not shorter than 645 nm and a wavelength not longer than 680 nm.
A vibration monitoring system includes an acoustic device that outputs an analog signal to a fiber cable for calibration and location verification. The acoustic device utilizes GPS or communication from wayside bungalow equipment to verify GPS location or real-time clock information. The wayside bungalow contains communication equipment that interfaces with the acoustic device and relays health information to a sensing processor. The sensing processor is configured to detect the acoustic signal output by the acoustic device at a known location and verifies that the cable and device have not moved location by comparing the signal level received against a threshold stored in memory. When the threshold is exceeded, the sensing processor sends an alert that the fiber optic cable or acoustic device at the location have changed.
Various controllers detect whether or not a remote object is in a predetermined position. A controller emits a laser through a laser emitter at the remote object and measures an intensity of light reflected back to the controller through a photosensor disposed in close proximity to the laser emitter. The surface of the remote object may comprise a retroreflective portion, which reflects most of the laser beam's light in the direction from which it came. A predetermined position of the remote object is detected when the intensity of light measured by the photosensor reaches a threshold level. The controller and retroreflective portion are configured such that when the remote object is not in the predetermined position, the intensity of the reflected laser light diminishes due to a scattering of the light when the laser beam is incident on any non-retroreflective portion of the remote object.
Many embodiments provide a hybrid data processing system (HySDS) of an end-to-end geodetic imaging data system enabling near-real-time science, assessment, response, and rapid recovery. The HySDS may be an operation data processing system that integrates data from many different geodetic data sources and/or sensors, including interferometric synthetic aperture radar (InSAR), GPS, pixel tracking, seismology, and/or modeling, and processes the data to generate actionable high quality science data products. The HySDS may provide for an automated imaging and analysis capabilities that is able to handle the imminent increases in raw data from new and existing geodetic monitoring sensor systems.
A probe for generating seismic waves, includes at least: a tubular body (10) having a first end linked to an electrical power cable, a capacitor bank arranged within the body, a spark gap installed at a second end of the body and linked to the capacitor bank, suitable for generating a seismic wave upon the release of the energy stored by the capacitor bank, wherein: the capacitor bank is formed from cylindrical capacitors (621) including bases each having a different polarity, the capacitors are mounted coaxially to each other, parallel to the main axis of the body, and the capacitors are electrically linked into at least two groups of capacitors connected in parallel, each group of capacitors having a positive pole and a negative pole, the groups being arranged in the body such that the facing poles of two adjacent groups are of the same polarity.
The present disclosure provides a system and method for efficiently mining multi-threshold measurements acquired using photon counting pixel-array detectors for spectral imaging and diffraction analyses. Images of X-ray intensity as a function of X-ray energy were recorded on a 6 megapixel X-ray photon counting array detector through linear fitting of the measured counts recorded as a function of counting threshold. An analytical model is disclosed for describing the probability density of detected voltage, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Three-parameter fits to the model were independently performed for each pixel in the array for X-ray scattering images acquired for 13.5 keV and 15.0 keV X-ray energies. From the established pixel responses, multi-threshold composite images produced from the sum of 13.5 keV and 15.0 keV data can be analytically separated to recover the monochromatic images through simple linear fitting.
Described herein are radiation detection systems and methods that provide improved discrimination between different types of radioactive events. The use of multiple discriminator settings based on pulse curve shape, rather than a single setting, is surprisingly found to improve discrimination between alpha and beta events. Results demonstrate significantly lowered % spill with minimal loss of efficiency due to the enhanced discrimination. These systems and methods are particularly important in the detection of extremely low-level alpha and beta events, and in the identification and quantification of isotopes with difficult-to-distinguish pulse shapes.
A computing device in a vehicle can be programmed to determine a virtual steerable path polynomial including a lane change maneuver, update the virtual steerable path polynomial by controlling a vehicle trajectory, and, pilot the vehicle based on the virtual steerable path polynomial. The computer further programmed to determine the virtual steerable path polynomial based on the vehicle trajectory.
The invention relates to a method for operating an optical proximity switch, wherein an object distance E is determined by means of a time-of-flight method and a specified range is limited by an adjustable switching distance SAE. The switching output (6) is activated at an object distance E1SAE+H(SAE), wherein a hysteresis H (SAE,R) depending on the switching distance SAE and on a reflectivity R is stored in the proximity switch, and, after the switching output (6) has been activated, the reflectivity R of the object is determined in addition to the object distance E2 and the switching output (6) is deactivated again only when the condition E2>SAE+H(SAE,R) is satisfied. The invention further relates to an optical proximity switch for performing the method according to the invention.
Nt transmitting antennas include Nt1 (Nt>Nt1) transmitting antennas arranged on a first straight line at a first spacing, and (Nt+1−Nt1) transmitting antennas arranged on a second straight line at a second spacing in a direction orthogonal to the Nt1 transmitting antennas, where Nt1 is a value that maximizes Nt1×(Nt+1−Nt1). Na receiving antennas include Na1 (Na>Na1) receiving antennas arranged on the first straight line at a third spacing, and (Na+1−Na1) receiving antennas arranged on the second straight line at a fourth spacing in a direction orthogonal to the Na1 receiving antennas, where Na1 is a value that maximizes Na1×(Na+1−Na1).
A wireless telecommunications system that employs a distributed-antenna system is described in which different combinations of radio signals are assigned to antennas so as to facilitate locating a wireless terminal based on the identity of the radio signals it receives above a threshold signal strength.
A user terminal measures a location thereof. In a method for measuring a terminal location, the terminal measures received signal strength indicator (RSSI) values of signals received from a plurality of electronic devices deployed in a space. Then the terminal extracts a preliminary location of the terminal with respect to each of a plurality of predetermined algorithms by applying the plurality of algorithms to the measured RSSI values, identifies a first estimated location of the terminal by applying a predetermined weight to each preliminary location, identifies a second estimated location of the terminal using an output of at least one sensor, and determines a final location of the terminal, based on the first and second estimated locations.
A magnetic resonance imaging apparatus and a diffusion-weighted image acquiring method form a radial k-space through a radial sampling and acquire a diffusion-weighted image from the radial k-space, with the diffusion-weighted image acquiring including receiving an echo signal generated from the subject, and forming a k-space having a plurality of sampling lines by sampling the echo signal that is received, wherein the directions of the diffusion gradient magnetic fields applied at the time of forming the sampling lines that compose the k-space to cross each other at two adjacent sampling lines.
In a method and magnetic resonance system for the automated determination of the resonance frequency or resonance frequencies of protons for magnetic resonance examinations, at least one signal is acquired and Fourier transform to a spectrum. An automated analysis of the spectrum, that has three resonance peaks, is made with at least two cross-correlation coefficients of at least one model spectrum being determined with the measured spectrum. Depending on the values of the cross-correlation coefficients, the resonance frequency is or resonance frequencies are determined.
Magnetic resonance imaging (MRI) systems and methods for determining and adjusting TI using single-line acquisition and automatic compartment detection. A method includes positioning a readout line of the MRI scanner through a compartment of interest of a region of interest in a subject. The method includes inverting magnetization within the readout line by playing an inversion pulse; and reading out data along the readout line after play of the inversion pulse. The method also includes determining a T1 value for each pixel along the readout line; determining the pixels that belong to first and second portions within the compartment of interest; determining a T1 value of each of the first and second portions by averaging the pixels within each portion; and determining an inversion time based on the determined T1 values such that the compartment of interest has a desired magnetization in an image to be acquired.
A magnetic resonance imaging (MRI) apparatus includes a radio frequency (RF) controller configured to, for a repetition time period, control the MRI apparatus to apply, to an object, an RF preparation pulse having a coverage area covering two or more slices among a plurality of slices of the object, control the MRI apparatus to apply, to the object, RF pulses respectively corresponding to the plurality of slices, and move the coverage area. The MRI apparatus further includes a data acquirer configured to acquire magnetic resonance signals from the plurality of slices during the repetition time period.
A magnetic gradient coil (110) for a magnetic resonance imaging system (100, 200) is actively shielded. The magnetic gradient coil is operable for generating a magnetic field (504). The magnetic field has a cylindrical axis of symmetry (130). The gradient coil has a length (132) parallel with the cylindrical axis of symmetry. The magnetic gradient coil has an outer surface (134). The magnetic field includes an external magnetic field outside of the outer surface. The external magnetic field has at least four reduced field regions (136, 138, 140, 142) along the length where the modulus of the magnetic field is less than the average of the modulus of the magnetic field along the length.
An arrangement for detuning a receive antenna, a detunable magnetic resonance coil, and a magnetic resonance device having a detunable magnetic resonance coil are provided. The arrangement includes a receive antenna having at least one first capacitance, wherein radiofrequency signals from a magnetic resonance examination may be received by way of the receive antenna. The arrangement furthermore includes a switchable detuning circuit containing the first capacitance switched to form an oscillating circuit and a first inductance, and a switching device having a first and a second connection point to deliver a voltage between the first and a second connection point, and one or more transistors. The switching device switches the oscillating circuit to a high impedance level with aid of the one or more transistors on delivery of a positive voltage to the first connection point, preventing a radiofrequency signal from being received by way of the receive antenna.
A system activates a switch between a disengaged state and an engaged state, receives, via the second optical excitation source, a light signal includes a high intensity signal provided by the second optical excitation source, and causes at least one of the photocomponent or the optical detection circuit to operate in a non-saturated state responsive to the activation of the switch.
The invention relates to a method for determining critical operating states in a fuel cell stack, consisting of single cells connected in series, wherein a low-frequency current or voltage signal is applied to the fuel cell stack, the resulting voltage or current signal is measured and the distortion factor thd is determined. According to the invention, the weighted sum of a term dependent on the membrane resistance Rm and a term dependent on the distortion factor thd is used to determine an indicator THDAdryout correlating with the drying out of the fuel cell membranes of the fuel cell stack, the membrane resistance Rm being detected by impedance measurement.
A battery class determination device includes a detector for sensing a terminal voltage and charge/discharge currents of a lead storage battery, an inner resistance calculator for calculating a direct-current inner resistance of the lead storage battery based on the terminal voltage and the charge or discharge current sensed by the detector, and a class determiner. The inner resistance calculator calculates, at a switchover between a discharge control and a charge control over the lead storage battery, a direct-current inner resistance in a first period before the switchover, and a direct-current inner resistance in a second period after the switchover. The class determiner determines a class of the lead storage battery based on the direct-current inner resistance in the first period and the direct-current inner resistance in the second period.
A testkey structure including the following components is provided. A fin structure is disposed on a substrate and stretches along a first direction. A first gate structure and a second gate structure are disposed on the fin structure and stretch along a second direction. A first common source region is disposed in the fin structure between the first gate structure and the second gate structure. A first drain region is disposed in the fin structure at a side of the first gate structure opposite to the first common source region. A second drain region disposed in the fin structure at a side of the second gate structure opposite to the first common source region. A testkey structure is symmetrical along a horizontal line crossing the first common source region. The present invention further provides a method of measuring device defect or connection defect by using the same.
A vehicle computer includes a memory and a processor programmed to execute instructions stored in the memory. The instructions include performing a self-check operation on a host vehicle after the host vehicle exits a manufacturing plant and before the host vehicle proceeds with a delivery process. The self-check operation includes measuring a battery charge, comparing the battery charge to a predetermined threshold, and commanding an autonomous vehicle controller to proceed with the delivery process as a result of determining that the battery charge exceeds the predetermined value.
An electrometer includes a sensing module and a control module. The sensing module includes a plurality of electrostatic sensing elements and a plurality of second electrodes. The plurality of electrostatic sensing elements are single walled carbon nanotubes or few-walled carbon nanotubes. The plurality of electrostatic sensing elements and the plurality of second electrodes are alternately arranged in a series connection. The control module is coupled to the two ends of the series connection and configured to measure a resistance variation ΔR of the series connection and convert the resistance variation ΔR into a static electricity potential.
Provided is a non-contact voltage measuring device capable of measuring, with given accuracy, measurement target voltages applied to various conducting wires having respective different shapes. An inner electrode which is deformable depending on a shape of a wire “w” is electrically connected, via a connecting section, to an outer electrode fixed to an electric field shield.
A probe pin includes a coil spring, a first plunger, a first end of which is inserted from a first end of the coil spring into the coil spring and a second end of which is exposed to outside of the coil spring, and a second plunger, a first end of which is inserted from a second end of the coil spring into the coil spring to be in contact with the first end of the first plunger and a second end of which is exposed to the outside of the coil spring. The second plunger includes at least one elastic arm extending from the second end of the second plunger, and a touch portion is provided at a leading end of the elastic arm and displaceable in a direction intersecting an axial center direction when pressing force in the axial center direction is applied to the touch portion.
According to one embodiment, an automatic container processing apparatus includes a tube socket, an operation part, and a control device. The tube socket has a container holding part for holding a container. The operation part is capable of operating the container holding part of the tube socket. The control device controls the operation part. The container held by the container holding part is dropped by operating the operation part.
The drug tracking system may be used to screen a subject's bodily waste and to identify a drug the subject has consumed. The system includes drug tags which include a one or more food dyes, each detectable in a subject's bodily waste using photographic or absorption spectroscopic analysis. The system may further include a database in which is stored the spectral signature of each drug tag and the unique drug associated with each drug tag. A spectral analysis obtained by analyzing a bodily waste sample may be entered into the database. The database may include instructions for comparing the spectral analysis to the spectral signature of each drug tag. The instructions may further report the unique drug associated with a drug tag which has a spectral signature matching the spectral analysis.
[PROBLEM] To provide a monoclonal antibody against a biomarker which shows high specificity and can be effectively used in detection and diagnosis of various lesions relevant to various kinds of carcinomas and foci of necrosis, and so forth.[MEANS] A monoclonal antibody against a necrosis marker consisting the following amino acid sequence: (1) the amino acid sequence of SEQ ID NO: 1, or (2) an amino acid sequence having substitution, deletion and/or insertion of one or several amino acid residues in the amino acid sequence of (1) or sharing a homology of 90% or more with the amino acid sequence of (1), and showing the same function, activity or property as that of the amino acid sequence of (1) as a protein.
The invention relates to a device (100; 200; 300; 400) for analyzing biological substances in a test solution, comprising a test substrate (101; 203; 303; 401) which is transparent at least in part, having a test region (107a, 108a, 109a, 110a; 211; 411) for receiving the test solution, a plurality of electrodes (111, 106; 201, 202; 301, 302; 402, 403) which are arranged on the test substrate (101; 203; 303; 401) and extend into the test region (107a, 108a, 109a, 110a; 211; 411), wherein in each case, at least one portion of the electrodes (111, 106; 201, 202; 301, 302; 402, 403) is made of a transparent material.
A state of a ballast water treatment system of a ship detected by a variety of sensors is monitored by transmitting it to a control means provided with a data storage/transmission means. The control means transmits from a satellite communication means to a satellite communication means on the receiving side via a communication satellite, and a host computer receives it. The host computer analyzes and monitors information from the various sensors S1 to S6 and sends back an optimal operation state, which is received by the satellite communication means on the ship side via the communication satellite, and the control means maintains an operation of the ballast water treatment system based on instructions from the host computer. According to the remote monitoring device for a ballast water treatment system as above, the ballast water treatment system can be monitored and controlled from remote.
A laser processing system herein includes a laser oscillator, a laser optical path that guides laser beam from the laser oscillator to a workpiece, a purge gas supply line for supplying a purge gas into the laser optical path, oxygen sensor and an impure gas sensor which detects an impure gas influencing the propagation of the laser beam that are installed in the laser optical path, and an impure gas sensor output value correction unit. The impure gas sensor output value correction unit corrects an output value of the impure gas sensor based on an output value of the oxygen sensor.
A distributed sensor system includes a set of spatially distributed base units and a central server both in communication with a data network. Each base unit includes a controller and one or more sensor modules where each sensor module includes a sensor configured to measure an air quality parameter. Each base unit transmits raw sensor data associated with each of the sensor modules over the data network and the central server receives the raw sensor data from the base units and stores the raw sensor data in a database.
An improved analytical method for analysis of dianhydrogalactitol preparations provides a method for determining the purity of dianhydrogalactitol and detecting impurities in preparations of dianhydrogalactitol, as well as identifying any such impurities. The method employs high performance liquid chromatography (HPLC), in particular, HPLC with refractive index (RI) detection; the HPLC can be followed by tandem mass spectroscopy. The method can further comprise the step of performing preparative HPLC collection of at least one specific substance peak present in a preparation of dianhydrogalactitol.
The present invention provides a method for a method for measuring the properties of liquid based on a quartz crystal microbalance sensor, which employs two measurements to obtain two frequency shifts of the QCM sensor induced by two different volume of the sample liquid. The present invention creatively established the relationship between the density and viscosity of sample liquid and the frequency shifts of QCM sensor. With present invention, the density and viscosity of sample liquid can be obtained through two frequency shifts. Comparing to the conventional liquid property measurement. The measuring procedure of present invention are more simple, and the measuring results are more accurate. Moreover, the present invention consumes less volume of sample liquid, and has the features such as online, real time and quantitative.
The invention provides a sensitivity correction coefficient calculating system for an X-ray detector with which the sensitivity correction coefficient can be calculated using a multipurpose X-ray source instead of a specific X-ray source. In the sensitivity correction coefficient calculating system for an X-ray detector having a detection surface where detection elements for detection the X-ray intensity are aligned one-dimensionally or two-dimensionally, fitting is carried out on the measured X-ray intensity detected by a detection element using an approximation function so as to calculate the sensitivity correction coefficient using the calculated X-ray intensity calculated from the approximation function and the measured X-ray intensity.
In a method for detecting corrosion of a surface not exposed to view of a metal piece, radiant thermal energy is directed against the piece by pulsed laser beam illumination thereby causing heating of said piece. Infrared radiation emitted by the piece is detected by a thermographic camera so that corroded portions of said surface are detected due to a different thermal response as a function of time relative to non-corroded portions. The laser beam is directed against an exposed face of a wall of said piece whose opposite face is the surface on which corrosion must be detected. The thermographic camera is provided on a same side where a laser head for emitting said laser beam is provided and has a control system for performing “Lock-in” thermography. Detection of the surface corroded portions is carried out by comparing a response of different surface portions during cooling of the piece.
Methods and systems for operating a flow cytometer can include forward scatter values, side scatter values, and fluorescence intensity values for events of an unstained sample and associating the fluorescence intensity values with forward scatter-side scatter side scatter plot regions. Methods and systems for operating a flow cytometer can also include measuring forward scatter values, side scatter values, and fluorescence intensity values for events of a stained sample, determining forward scatter-side scatter plot locations for the events of the stained sample, and for each event of the stained sample, subtracting the fluorescence intensity value associated with the forward scatter-side scatter plot region that contains the forward scatter-side scatter plot location of the stained sample event from the measured fluorescence intensity value of the stained sample event at that forward scatter-side scatter plot location.
An infusion set and an intravenous bag adapter constructed of ultraviolet transmissive thermoplastic are used in spectroscopic validation of pharmaceuticals. The described hardware allows for qualitative and quantitative assurance of medications and is used to prevent medication errors. The thermoplastic is transmissive in the range below 315 nanometers. In one embodiment, the invention comprises a spectrometer and a test chamber that are unaffected by the presence of ambient light. The spectrometer includes an unshielded slot or receptacle into which the test chamber is easily fitted. This embodiment can function well in drug diversion programs for which unused post-op narcotics can be tested.
Perturbed oscillatory kinetics electrochemistry methods include methods of determining an electrochemical response of a test coupon to a mechanical load. Such methods include applying a cell of electrolyte solution to a test region on a test coupon, contacting the electrolyte solution with a counter electrode, and applying a mechanical load to the test coupon to produce a deflection event. Additionally, methods include measuring a pre-event value of an electrical parameter of the test coupon, before applying the mechanical load, and measuring a post-event value of the electrical parameter, after applying the mechanical load. Methods include determining an electrochemical response of the test coupon to the mechanical load based on the post-event value and the pre-event value.
Systems and methods are provided for testing filters. In an exemplary embodiment, a method is provided for testing a filter within a duct system that includes mounting a port to a wall of a duct of the system, positioning a section of tubing within the duct from the port until an outlet end of the tubing is disposed adjacent a filter, connecting a source of test media to the port; delivering test media from the source through the port and tubing into the duct to the filter, and scanning the filter for test media.
Nuclear magnetic resonance (NMR) gas isotherm techniques to evaluate wettability of porous media, such as hydrocarbon reservoir rock, can include constructing a NMR gas isotherm curve for a porous media sample gas adsorption under various pressures. A hydrophobic or hydrophilic nature of the porous media sample can be determined using the NMR gas isotherm curves. A wettability of the porous media sample can be determined based on the NMR gas isotherm curve. The wettability can be determined for porous media samples with different pore sizes. In the case of reservoir rock samples, the determined wettability can be used, among other things, to model the hydrocarbon reservoir that includes such rock samples, to simulate fluid flow through such reservoirs, or to model enhanced hydrocarbon recovery from such reservoirs.
A dilution and filtration device comprises: a sampling member comprising a suspension collecting chamber having at least one suspension collecting window disposed at a side surface of the suspension collecting chamber; a top cap having a through hole at a center portion of the top cap; a connecting cylinder disposed at a top end of the sampling member and mounted to the through hole of the top cap such that the connecting cylinder is concentric with the through hole and is rotatable; and a specimen tube connected to the top cap and accommodating the sampling member. An apparatus of preparing excrement detection solutions comprising the dilution and filtration device and a method of preparing excrement detection solutions using the dilution and filtration device are also provided.
A sample processing assembly for treatment of a sample on a substrate includes a mounting surface for the substrate and a closure body configured to releasably retain a cover member. The closure body is movable between an open position and a substantially closed position. When a substrate is placed in the assembly and the closure body is in the substantially closed position while retaining a cover member, a reaction chamber is formed for processing a sample. A cover member for use with the sample processing assembly is also provided.
A tool and a method are provided, for applying a correction on a resection margin of a tissue block, in order to align the resection margin with the cutting plane of a microtome. The correction is determined using an embedding block having been cut by the microtome. The tool comprises a base, a chuck receiver, a positioning assembly comprising a flat surface and a bi-axial pivoting assembly operatively connected to one of the chuck receiver and the positioning assembly. The positioning assembly and the chuck receiver are movable one relative to the other for pressing the embedding block between said flat surface of the positioning assembly and the top surface of the chuck, for tilting the bi-axial pivoting assembly according to a compensating angle indicative of the correction to make.
A system and method are provided for equipment sound monitoring. The system includes an electromechanical device having at least one cavity defined therein. A dampening tube is such that at least a portion of the dampening tube is received within the at least one cavity without contacting a surface of the electromechanical device. A transducer box includes an opening defined therein, the opening configured to receive at least a portion of the dampening tube. The transducer box further includes a sound detection module configured to detect at least one of audio and vibration associated with the electromechanical device. A method of connecting and using the equipment sound monitoring system are provided.
A physical quantity measuring device includes: a sensor module provided with a diaphragm; a joint to which the sensor module is attached, the joint including a pressure inlet for delivering fluid to be measured to the sensor module. The joint is made of a synthetic resin and includes a joint body and an elastically deformable claw provided to the joint body and configured to lock the sensor module. Since the claw keeps the sensor module to be held by virtue of the elastic force of the claw, a further attachment process such as welding for attaching the sensor module to the joint is unnecessary. Since the joint body and the claw are integrally made of synthetic resin, it is not necessary to separately manufacture the joint body and the claw.
The present invention discloses a diode array-based digitized miniature ultra-low-power-consumption impact monitoring system, which belongs to the technical field of aircraft structural health monitoring. The impact monitoring system consists of a miniature sensor array interface, a passive band-pass filter array, a diode array, a digital conversion and management module, an on-board bus communication module, a monitoring data storage module, a self-powering module, and a miniature communication and power supply interface. According to the impact monitoring system, the amplitudes of impact response signals are controlled within a clamp voltage range of diodes by using the diode array, thereby realizing the first-stage digitization; and the second-stage digitization of the impact response signals is realized by using the digital conversion and management module consisting of a miniature field programmable gate array of ultra-low-power-consumption. The impact monitoring system can realize on-line, real-time and uninterrupted impact monitoring on large-scale aircraft structures, thereby improving the safety and maintenance efficiency of the aircraft structures.
The instant disclosure provides a probe cover dispensing device including a base and an elastic element. The base includes a housing unit, a probe cover dispensing unit and a connection unit disposed between the housing unit and the probe cover dispensing unit. The probe cover dispenser unit can rotate between a first predetermined position and a second predetermined position relative to the housing unit through the connection unit. The elastic element is disposed in the housing unit to apply a pressure on a probe cover which is disposed in the housing unit. The probe cover is abutted by the elastic element and limited in the housing unit. When the probe cover dispensing unit rotates from the first predetermined position to the second predetermined position, a sliding groove may be formed between the housing unit and the probe cover dispenser unit for the probe cover to slide therein.
The present invention related to a new passive wireless sensor platform which is based on the intermodulation communication principle. The platform may utilize a quartz crystal or other mechanical resonator. Additionally, the platform allows for a narrow bandwidth and/or ID-code of a sensor. Certain embodiments enable high frequencies and large read-out distances. It facilitates a generic sensor element and can thus be used to monitor virtually any quantity. Additionally, it offers a means to realize a wireless passive sensor using MEMS sensor technology.
A radar level gauge system controllable between a measurement state and a signal processing state. In the measurement state a first timing signal circuit is enabled, a microwave signal source generates a transmit signal with a time-varying frequency being related to first timing signals from the first timing signal generating circuitry, and a sampler samples a mixer signal at sampling times related to the first timing signals. in the signal processing state, the first timing signal circuit is disabled, and a signal processor determines the filling level based on the sampled values of the mixer signal using second timing signals from a second timing signal generating circuit.
An optical encoder having diffuser members, and methods for detecting the rotational movement of the cylinder of the optical encoder are disclosed. The optical encoder may include a rotatable cylinder configured to reflect light. The rotatable cylinder may include an encoding pattern of alternating reflective stripes having distinct light-reflective properties. The optical encoder may also include a light source positioned adjacent the rotatable cylinder, and an array of optical sensors positioned adjacent the rotatable cylinder. The array of optical sensors may receive the reflected light from the rotatable cylinder. The optical encoder may include a diffuser member positioned on the rotatable cylinder, the light source, and the array of optical sensors.
Electronic components may be integrated in objects used by the trucking industry, such as truck, tractor trailer, cargo, and loading bay. These objects may then communicate with each other and with a gateway device to transmit or receive data or commands. The gateway may be configured to attach to the truck, such as by securing to the truck frame or securing to an interior of the truck cab. The gateway may couple to one or more input devices, and receive sensor data through the one or more input devices. The gateway may execute steps that allow the gateway to update an engine computer with a firmware that provides better operation, such as improved fuel efficiency, during a portion of the vehicle's route.
Route search systems, methods, and programs search for a recommended route using a cost value of a link or a node that constitutes a route. The systems, methods, and programs calculate the cost value of the link or the node on the basis of calculation material information that serves as a material for calculating the cost value, and specify a reliability degree of the calculated cost value of the link or the node on the basis of a number of pieces of the calculation material information used to calculate the cost value of the link or the node. The systems, methods, and programs correct the cost value of the link or the node, the reliability degree of which has been specified, on the basis of the specified reliability degree, and search for the recommended route using the corrected cost value.
A Brillouin-based distributed bend fiber sensor and method for using the Brillouin-based distributed bend fiber sensor are described herein. In one example, the Brillouin-based distributed bend fiber sensor is specially configured to measure a temperature distribution (ΔT), a bend angle β, and a bend radius R along a deployed fiber (e.g., four-core fiber).
A three-dimensional shape measuring device is provided that enables an accuracy in measuring a three-dimensional shape of a subject to be improved even when a relationship between a luminance value and a distance deviates from an ideal point light source model in which the luminance value is inversely proportional to the square of the distance. A biometric authentication device includes a coefficient setting unit that sets a coefficient that is an index of a power in a model expression for making a luminance value of a captured image be proportional to an inverse of the power of a distance from a light source to a measurement point of the luminance value according to a prescribed condition, and a three-dimensional shape measuring unit that measures the three-dimensional shape of the subject according to the luminance value of the captured image and the coefficient.
Using the same image sensor to capture both a two-dimensional (2D) image of a three-dimensional (3D) object and 3D depth measurements for the object. A laser point-scans the surface of the object with light spots, which are detected by a pixel array in the image sensor to generate the 3D depth profile of the object using triangulation. Each row of pixels in the pixel array forms an epipolar line of the corresponding laser scan line. Timestamping provides a correspondence between the pixel location of a captured light spot and the respective scan angle of the laser to remove any ambiguity in triangulation. An Analog-to-Digital Converter (ADC) in the image sensor generates a multi-bit output in the 2D mode and a binary output in the 3D mode to generate timestamps. Strong ambient light is rejected by switching the image sensor to a 3D logarithmic mode from a 3D linear mode.
A laser measuring system is provided by combining N-beams, angle based modulation and a laser receiver and laser transmitter configured with corner reflectors for signal shift measuring to facilitate full three dimensional positioning.
The present invention provides the Fabry-Perot (F-P) sensor compromising housing, measuring probe, longitudinal sling block, and displacement converting device. The optic fiber passes through upside sealing ring and extends into upside through hole with the optic fiber end surface disposed at the bottom; the upside of longitudinal sliding block is disposed with reflecting surface, thus a Fabry-Perot cavity is formed between part of the fiber end surface at the bottom of the fiber and the reflecting surface on the upside of longitudinal sliding block. The displacement converting device will convert the lateral slides of the measuring probe into the slides of the longitudinal sliding block, which thus changes the distance from the reflecting surface to the fiber end surface and changes the Fabry-Perot cavity length. Further, the sliding distance of the measuring probe can be calculated after the variation of the Fabry-Perot cavity length measured in according with the Fabry-Perot principle.
A spare magazine holder for a holster facilitates rapid magazine replacement. Each spare magazine is supported in a well in the holder at a predetermined angle relative to the grip of the pistol in the pistol sleeve to allow for straightforward and rapid exchange. The spare magazine may be substantially parallel or at least near-parallel to the magazine loaded in the grip of the pistol in the pistol sleeve. The holder preferably includes two wells in a vertical stack, each configured to receive a spare magazine at substantially the same angle. One or more fasteners may be provided for adjusting the frictional engagement of the spare magazine disposed in each well. The spare magazine(s) may be disposed in a plane parallel to the plane of the pistol, and this plane may be offset from the plane defined by the grip and the barrel of the gun.
A method of controlling a motor-driven aiming device, the method including the steps of servo-controlling the motor as a function of a difference between a nominal speed setpoint and a measurement of the angular speed sensor, and in the event of saturation, determining a correction value for correcting the nominal speed setpoint as a function of a difference between a reference inertial position prior to the saturation and a current inertial position, and applying the correction value to the nominal speed setpoint. An aiming device for implementing the method.
A universal marksmanship training system is disclosed herein configured to utilize a display device comprising a graphic display. A software application may also be provided. The software application is often configured to display a virtual target on the graphic display. A chamber insert may be utilized, the chamber insert configured to be positioned with the firing chamber of a firearm to be zeroed, wherein the chamber insert interacts with the software application to determine alignment of a bore of the firearm to a bore alignment point on the graphic display. In one form, the display device displays a sight target on the graphic display wherein the sight target is visually perceived by a marksman, and is offset from the bore alignment point by a offset distance. In one form, the software application calculates the sight target relative to the bore alignment point of the firearm given a set of condition variables.
An aiming device includes a set of lenses disposed along an optical path, the set of lenses including an objective lens and an ocular lens. A reflective element is disposed on the optical path between the objective lens and the ocular lens. An addressable display is located off the optical path and projects an image to the reflective element. The image is viewable through the ocular lens and is an aiming element superimposed on a field of view.
A composite tube for an archery bow limb or arrow shaft preferably includes a first fiber sheet with fibers parallel and substantially perpendicular to a lengthwise axis of the composite tube; a second fiber sheet with fibers parallel to the lengthwise axis; a third fiber sheet with fibers oriented substantially 45 degrees from the lengthwise axis; and fourth fiber sheet with fibers parallel and substantially perpendicular to the lengthwise axis. The first fiber sheet is wrapped around a mandrill; the second carbon fiber sheet is wrapped around the first fiber sheet; the third fiber sheet is wrapped around the second fiber sheet; and the fourth fiber sheet is wrapped around the third fiber sheet. The mandrill with the first, second, third and fourth fiber sheets is baked in an autoclave. The spacing between fibers in the first, second, third and fourth carbon fiber sheets may be the same or different.
A crossbow cable saver may have a cable engagement portion designed to engage at least one crossbow cable and a main beam engagement portion designed to engage the crossbow main beam. The cable saver may be operable to pivot with respect to the main beam between a first position where a first surface of the main beam engagement portion contacts the main beam and the second surface does not; and a second position where the second surface contacts the main beam and the first surface does not.
The invention relates to the field of sports weapons. The crossbow comprises a bow with a bow string, a shoulder stock and a tubular stock which connects said bow and shoulder stock and has two diametrically arranged longitudinal helical grooves, the helical grooves in the stock are of through design, and the bow string is passed through the helical grooves, wherein the helical grooves have a length of not less than the value of the bow string tensioning motion. Furthermore, an arrow to be launched is arranged inside the stock and is brought into engagement with the bow string such that an axial force and a rotational moment can be transmitted to one of the structural elements: by means of an annular slide with two radial openings which are open therein, are diametrically arranged and through which the bow string is passed, inside a tube inserted into said openings, or without a slide, only with the aid of a tube which is slipped onto the bow string, for which supports are formed on the bow string, or directly from the bow string, without a slide and without a tube. A simplification of the design, a reduction in the weight and necessary power of the crossbow, and an increase in the stabilization of an arrow during flight are achieved.
A method and apparatus for limiting the amount of rotation of a upper assembly in relation to a sub-assembly is disclosed. The apparatus comprises a pin corresponding to a pinhole of a sub-assembly of a firearm. A bumper is coupled to the pin by a connector. When the pin is placed in the pinhole, the bumper will prevent full rotation of the upper in relation to the sub-assembly while allowing some separation. The method comprises replacing a front pin of a firearm with a pin such that bumper abuts the upper and the sub-assembly when the upper is rotated about the pin. When the upper is rotated, the magazine is removed.
A blast control device for a firearm is disclosed. The blast control device may include a muzzle brake comprising a first end, a second end, a top, a bottom, a bore, one or more baffles, one or more gas openings disposed between the one or more baffles, an alignment channel disposed on the top, one or more gas holes disposed on the top within the alignment channel, an alignment groove disposed at an end of the alignment channel, and a latch notch. The blast control device also may include a blast shield attachable around the muzzle brake. The blast shield may include an alignment protrusion, a latch assembly, a plurality of internal ribs, and one or more gas ports.
First round shot noise and flash caused by combustion of oxygen contained in the air residing in a firearm sound suppresser can be reduced by providing a valve that communicates with the baffled interior space of the suppressor, and connecting a source of non-flammable gas such as CO2 to the valve in order to inject the gas into the suppressor. The non-flammable gas displaces the air in the suppressor, removing the oxygen available for combustion when the first shot is fired.
An M240 machine gun barrel assembly with a barrel with a muzzle end at the distal end of the barrel and a breach end at the proximal end of the barrel; a handle connector connecting the barrel to a handle assembly; and the handle assembly having a free end and a connected end, the connected end operably connected to the handle connector; the handle assembly operable between a first position with the free end of the handle assembly pointing proximally and a second position with the free end of the handle assembly pointing distally.
A heat dissipation device includes a first casing, a second casing, a thin pump, and a cooling member. The second casing is connected to the first casing to form a first accommodating space and a second accommodating space adjacent to and communicating with the first accommodating space. The thin pump is disposed in the first accommodating space. The cooling member is disposed in the second accommodating space and has a plurality of spacers, and the spacers and the thin pump are disposed on the same plane of the first casing. A portable electronic device having the heat dissipation device is also disclosed.
A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
The invention relates to a gasketed heat exchanger including a plurality of heat exchanger plates, wherein each of the heat exchanger plates has a plurality of dimples. The dimples have tops and bottoms. Furthermore, the tops of at least one heat exchanger plate are connected to the bottoms of another neighboring heat exchanger plate. In order to prevent plastic deformations of the heat exchanger plates under external forces and internal fluid pressures the dimples are elastically deformable.
Disclosed herein are a wavy fin, a heat exchanger having the same, an apparatus for manufacturing the same, a method of manufacturing the same, and a computer-readable recording medium storing the method. The wavy fin is configured such that top and bottom parts are alternately formed in a width direction while being connected by side parts, and the top, bottom, and side parts extend in a longitudinal direction so as to form a wave such that ridges and valleys are alternately repeated, and includes a front part in front of each ridge or valley of the wave in the longitudinal direction, and a rear part beyond the ridge or valley of the wave in the longitudinal direction. The front and rear parts are offset from each other in the width direction so as to be misaligned at the ridge or valley of the wave.
A multi-zone heat exchanger has a first end and a second end and a width divided into a plurality of parallel airflow zones. Each zone defines an airflow section of the heat exchanger that receives a portion of the airflow through the heat exchanger. A first tube of continuous construction is coupled to an inlet port and to an outlet port and forms a first refrigerant circuit spanning three or more passes from the first end to the second end. The first refrigerant circuit passes between at least two zones of the plurality of zones. A second tube of continuous construction is coupled to the inlet port and to the outlet port and forms a second refrigerant circuit spanning three or more passes from the first end to the second end. The second refrigerant circuit passes between the at least two zones of the plurality of zones.
An oven temperature monitoring system including a box top and a box body formed out of an alkene fluorocarbon material for monitoring the temperature and duration of a powder coat curing cycle is provided. The box top includes a receptacle in communication with a printed circuit board and an antenna that are secured within a housing on the inward facing surface of the box top. A pair of thermocouples are attached to an item that has been powder coated and communicates temperature data back to the electronic device that can be transmitted out of the oven during curing cycles to a computer monitored by a user. This information can be used to ensure proper curing time and temperature and significantly reduces wasted thermal energy due to incomplete or repeated cure cycles.
A cosmetic sponge drying and storage container has a plurality of components, including at least a first component and a second component, the first component being moveable with respect to the second component to position the container in at least an open condition and a closed condition. At least one of the first component or said second component is perforated with perforations. A cosmetic sponge may be placed within the container when in the open condition and the perforations provide at least 10% ventilation when the container is in the closed condition. Preferably, both the first and second components are perforated to provide for cross-ventilation. In addition, a base may be provided to support the first and second components, and most preferably the base may be perforated.
A refrigerator including a refrigerator body including a refrigerating compartment and a freezing compartment, a refrigerating compartment cooling circuit including a refrigerating compartment compressor for compressing refrigerant, a refrigerating compartment condenser, a refrigerating compartment expansion unit, and a refrigerating compartment evaporator for causing the refrigerant to exchange heat with the refrigerating compartment; a freezing compartment cooling circuit including a freezing compartment compressor for compressing refrigerant, a freezing compartment condenser, a freezing compartment expansion unit, and a freezing compartment evaporator; a refrigerating compartment temperature sensor; a freezing compartment temperature sensor; and a control unit for controlling the refrigerating compartment compressor and the freezing compartment compressor to be concurrently operated so as to proceed to a concurrent operation mode when the refrigerating compartment and the freezing compartment are under a concurrent cooling condition, and for controlling one or both of the refrigerating compartment compressor and the freezing compartment compressor to be operated so as to proceed to a selective operation mode in consideration of a previous operation state when the refrigerating compartment and the freezing compartment are under a selective cooling condition.
A two-stage proportional control valve configured for use in a fluid system includes a valve body having a longitudinally extending valve body bore formed therethrough. A first stage microvalve is mounted within the valve body bore, and a second stage spool assembly is mounted within the valve body bore downstream of the microvalve. The second stage spool assembly includes a sleeve and a spool slidably mounted within the sleeve.
A refrigeration device having a closed circuit in which a flow rate of coolant is circulating is provided. The closed circuit has a condenser and a main branch provided with a reciprocating compressor inside which a defined flow rate of the coolant enters, from the main branch, at a defined suction pressure, of an evaporator and a first expansion valve that is arranged between the condenser and the evaporator. The closed circuit further has a first secondary economizer branch for a first fraction of flow rate of the coolant, the first secondary economizer branch fluidically connecting the compressor to a section of the closed circuit between the condenser and the first expansion valve, wherein the compressor has a first side inlet port for the entrance of the first fraction of coolant flow rate.
An indoor unit for an air conditioning device that can increase the strength of a casing of the indoor unit, increase the stability of the indoor unit, and promote cooling of an electric component is disclosed. The indoor unit for the air conditioning device includes a casing formed with an intake air port in a lower portion thereof, and formed with an exhaust air port in an upper portion thereof, a fan arranged inside the casing, and generating air flow from the intake port to the exhaust port, a heat exchanging device arranged below the fan inside the casing to exchange heat with the air taken into the casing from the intake port, and an electric component case provided at a position adjacent to a lateral side of the fan in a circulation space of the air in the casing and configured as a strengthening member of the casing.
An air conditioner control system comprises air conditioners configured to condition an environment in a target space, an integrated controller configured to control the air conditioners based on control parameter data, sensor devices configured to measure the temperature of the target space and transmit measurement data, and wireless master devices configured to create control parameter data based on the measurement data. The wireless master devices each determine sleep times so that at least two sensor devices run out of battery charge around the same time according to the remaining charge amount of each of the sensor devices. The sensor devices each will be in the sleep mode in which power consumption is lower than in the normal mode according to the sleep time decided by the wireless master devices.
A cooking device comprises a frame including supporting parts to support a tray on which food is put; a partitioning plate to divide an inner space of the frame into a cooking chamber and an air flow chamber; a burner in the air flow chamber; and a fan in the air flow chamber, wherein the partitioning plate includes an air inlet to introduce air inside the cooking chamber into the air flow chamber, and air outlets to discharge air heated by the burner in the air flow chamber to the cooking chamber, and the air outlets include a first air outlet and a second air outlet located at a lower level than the first air outlet, at least a part of the second air outlet is located at a lower level than the tray while the tray is supported by a lowermost supporting part of the supporting parts.
A method is provided to vaporize a working fluid using a heat sourcing fluid. A first portion of the heat sourcing fluid passes through the first section, in counter-flow with the working fluid. A second portion of the heat sourcing fluid passes through the second section, in co-flow with the working fluid. Both the first and second portions pass through the third section, in overall counter-flow with the working fluid. The working fluid passes sequentially through the third section, the first section, and the second section. The method may be used in a Rankine cycle for waste heat recovery or in a refrigerant cycle.
The present disclosure describes example magnetic LED lighting systems. A lighting apparatus in accordance with the present disclosure may include LEDs connected in series with a resistor. The LEDs are each coupled, directly or via thermal vias through a mounting element, to one or more magnets. The magnets may serve dual purposes: as a heat sink to dissipate heat and enable LEDs to be used, and as a mounting device to mount the lighting apparatus to a desirable location, such as on an automobile or an industrial machine. The dual-purpose magnets may eliminate the need for an additional heat sink element, thereby reducing weight and/or size of the lighting apparatus.
The present invention relates to a candle warmer having a touch type on/off means, which allows a lamp constituting the warmer to flicker by touching a certain portion of a candle body and, more specifically to, a candle warmer having a touch type on/off means, comprising a contact sensor having a dimming function, wherein power supplied to the lamp can be turned on or turned off by bringing the contact sensor into contact with the warmer body to touch a certain portion of the warmer body, and the evaporation loss of an aromatic candle can be controlled by adjusting the output of the lamp.
A display system, a method of constructing a display system, and a method of displaying an image are described. In one embodiment, a display system includes a support structure having a plurality of attachment members and a plurality of tiles. Each of the plurality of tiles is attached to a corresponding attachment member of the plurality of attachment members. The support structure is configured to structurally support each of the plurality of tiles, and at least one of the plurality of tiles includes at least one connection configured to removably connect and align the at least one of the plurality of tiles with another one of the plurality of tiles.
A T-bar type support extends in elongate form and is configured, such as with a spine and rest shelf, for supporting edges of ceiling tiles thereon within a suspended ceiling system. A lighting module is suspended below other portions of the T-bar. The T-bar also includes a reflector plate above the body which extends at least partially laterally and below where the ceiling tiles are supported. A lighting source within the lighting module shines light upwardly which then reflects off of the reflector plate and down into an interior space beneath the suspended ceiling. Legs preferably suspend the lighting module below the reflector plate, with the legs preferably at ends of the T-bar, and with open space between the legs, so that nothing obstructs light shining from the lighting source up against the reflector plate and then down into the interior space beneath the ceiling.
A lens and strobe light system are provided. The lens can include a base defining a cavity configured to accept one or more light sources. The lens can further include one or more lens segments disposed on the base. The one or more lens segments can be configured to direct light emitted from the one or more light sources out from the lens. The strobe light system can include a plurality of light sources, a plurality of lenses disposed on the plurality of light sources, and a controller configured to control the operation of the plurality of light sources. The plurality of lenses can be configured to direct light emitted from the plurality of light sources out from the strobe light system.
The present invention relates to an optical lens package, said lens package (1) having a lens body comprising a base (7), a central surface section (4) opposite to the base (7) and a peripheral surface section extending between the central surface section (4) and the base (7). The central surface section (4) is centered with respect to the optical axis (5) of the lens package (1) and has a convex shape in at least a first cross-sectional plane including the optical axis (5). At least a portion (6) of the peripheral surface section has a concave shape in said first cross-sectional plane. With such a design of the optical lens package (1) in addition to a central collimated light bundle with high luminous flux also side visibility is achieved by means of the concave portion (6) up to a high angle with respect to the optical axis (5). This side visibility is achieved without additional optics thus lowering the production costs of such an optical system compared to a solution using additional optics.
A light emitting module of an embodiment comprises: (1-1)th to (1-M)th (where M is a positive integer equal to or greater than 2) light emitting elements connected with each other; (2-1)th to (2-N)th (where N is a positive integer equal to or greater than 1) light emitting elements connected in parallel with a (1-m)th (1≤m≤M) light emitting elements which is one of the (1-1)th to (1-M)th light emitting elements; and an on/off controller controlling to turn the (1-1)th to (1-M)th light emitting elements and (2-1)th to (2-N)th light emitting elements on or off according to a level of an operation signal. The on/off controller comprises a first on/off control unit controlling to turn the (1-m)th light emitting element and (2-1)th to (2-N)th light emitting elements on or off, and a second on/off control unit controlling to turn the remaining light emitting elements on or off, excluding the (1-m)th light emitting element from the (1-1)th to (1-M)th light emitting elements, wherein the first on/off control unit compensates for a change in a second current flowing in the (2-1)th to (2-N)th light emitting elements, depending on the temperature, in conjunction with a first current flowing in the (1-m)th light emitting element.
A laser car lamp includes a light guide element, a phosphor element, a first laser diode, a second laser diode, a lens, and a reflector. The light guide element has first and second surfaces opposite to each other. The phosphor element and the lens are disposed at two opposite ends of the light guide element. The reflector is configured to reflect the first laser beam generated by the first laser diode and reflect the second laser beam generated by the second laser diode to the first surface. The first laser beam is scattered by the phosphor element to form a first scattered light, the second laser beam is excited and scattered by the phosphor element to form a second scattered light. The mixed light beam including the first scattered light beam and the second scattered light beam is emitted from the first surface toward the lens.
The present invention relates to a nano-scale light emitting diode (LED) electrode assembly emitting polarized light, a method of manufacturing the same, and a polarized LED lamp having the same, and more particularly, to a nano-scale LED electrode assembly in which partially polarized light close to light that is linearly polarized having one direction is emitted as an emitted light when applying a driving voltage to the nano-scale LED electrode assembly and also nano-scale LED devices are connected to a nano-scale electrode without defects such as an electrical short circuit while maximizing a light extraction efficiency, a method of manufacturing the same, and a polarized LED lamp having the same.
The present invention relates generally to LED (light emitting diode) array assemblies, and more specifically, to hi-powered LED array assemblies which are compact, cost-effective and easily assembled, while still addressing the issue of thermal management in such systems. An improved LED array assembly is described which is compact, cost-effective and easily assembled, while still addressing the issue of thermal management. An exemplary LED assembly consists of four separate and independent printed circuit boards (PCBs) which are arranged in an elongated square prism on a base PCB to form a “tower”, the four PCBs being mechanically interconnected by means of complementary slots and tabs. Each of the vertically arranged PCBs supports and provides power to one or more LEDs. Other aspects of the invention are also described including a flared base, drainage openings, and retaining notches on the perimeter of the PCB tower.
A wall mounting system for connecting a back of a flat or curved screen to a wall, including, a mounting interface having semi-spherical depressions, multiple elongated beams having matching, semi-spherical depressions for adjustably coupling with the semi-spherical depressions of the mounting interface, wherein the semi-spherical depressions of the elongated beams and the mounting interface have holes for non-movably coupling between them once adjusted, wherein each elongated beam has one or more cut out portions for attaching the elongated beam to the back of the screen: and wherein the mounting interface serves as an interface for holding the screen while it is attached to the wall by the mounting system.
A large-aperture spiral welded steel pipe with metal linings and a manufacturing method thereof, wherein the pipe includes a pipe body spirally winded by a main steel belt; a first lining and a second lining are arranged on a body inner wall, the first lining is spirally laminated on the main steel belt surface, the first lining width is smaller than the main steel belt width, the second lining is spirally laminated on a spiral seam formed between adjacent pipe bodies, the second lining left and right sides are respectively welded with the adjacent first lining, and the first lining and the second lining cover the inner wall of the entire body; and a reinforcement ring with a semi-closed section is spirally arranged along a body outer wall, and a spiral passage is formed between the inner wall of the reinforcement ring and the body outer wall.
A pipe-connecting device including a resin-made tube and an inner ring. The inner ring has a flared portion and a tip-contracted outer-circumferential flared surface. The tip-contracted outer-circumferential flared surface is press-inserted into an end portion of the tube to cause the end portion of the tube to be flared and deformed. A section shape of the outer-circumferential flared surface in a direction extending along an axis of the inner ring body is formed into a convex curved surface passing through a first place, which is a maximum-diameter portion of the flared portion, a second place, which is the tip end side of the flared portion of the inner ring body, and a third place, which is between the first place and the second place, and in which a diameter is equal to an outer diameter of the tube with respect to the axis.
A rotary spring-return actuator operator is provided with a multi-slot shaft and a clock type spring retained by a retaining band which encircles the spring in such a manner as to insure that the potential energy within the spring is safely contained during all operations requiring disassembly of the actuator assembly, and wherein the retaining band facilitates the in-field reversal of the spring direction or the adjustment of the spring preload by securing the spring to one or more of the slots on the multi-slot shaft.
A drive device includes a drive member, a light source, a marker, a detector, a signal processor and a strain controller. The drive member includes at least a material which generates a plasmon. The drive member generates strain in response to input energy. The marker is formed on a surface of the drive member. Strain occurs in the marker in accordance with a deformation of the drive member and the marker reflects or transmits light emitted from the light source. The detector detects a light intensity of light reflected from or transmitted through the marker. The signal processor calculates an amount of strain which occurs in the marker based on the light intensity. The strain controller controls an amount of strain of the drive member based on the amount of strain calculated by the signal processor.
Embodiments of a pinch valve assembly include a controller, where the controller is preprogrammed with a plurality of selectable modes including a step and direction mode, a flow monitoring mode, a flow and fill mode, and an unclog mode, and an actuator assembly, the actuator assembly being controlled by the controller, an actuator, the actuator being actuated by the actuator assembly, a piston, the piston being coupled with the actuator, a valve body, the valve body being coupled with the actuator assembly, and an aperture, the aperture being formed in the valve body, wherein the aperture is configured to retain at least a portion of tubing such that fluid or gas flow within the tubing can be metered.
A mechanical seal device has a mating ring that rotates with a rotating shaft, as well as a seal ring that slidably contacts the mating right, so as to seal between the rotating shaft and a seal cover fixed to an equipment main body, wherein the seal cover is a split structure comprising at least an inner-diameter-side seal cover and an outer-diameter-side seal cover, the inner-diameter-side seal cover is detachably connected to the outer-diameter-side seal cover, and the seal ring is connected to the inner-diameter-side seal cover in a securely following manner.
In order to provide a sealing arrangement for sealing between a first medium chamber filled with a first medium and a second medium chamber filled with a second medium, in the region of a component which is movable along the longitudinal axis, which can be easily manufactured and has low leakage, it is proposed that the sealing arrangement comprises a sealing element which comprises at least one dynamic sealing portion which is placed or placeable on the movable component, wherein the at least one dynamic sealing portion comprises at least two sealing lips between which a leakage reservoir is formed, wherein the leakage reservoir is partially delimited by two boundary surfaces of the sealing lips arranged facing one another, wherein the leakage reservoir is formed at least partially by a concave recess in at least one or between the at least two boundary surfaces of the sealing lips.
A transfer includes: an input shaft; an output shaft; a high-low switching mechanism; an output member whose output destination is different from output destination of the output shaft; a clutch for transmitting a power to the output member; a first transmitting mechanism for transmitting movement of an internally threaded member to the clutch; and a drum cam having a cam groove. The cam groove includes a first inclined section that causes the high-low switching mechanism to be switched between a high-speed gear stage and a low-speed gear stage, and a second inclined section that causes the first transmitting mechanism to be switched between (i) a separated position in which the first transmitting mechanism is separated from the clutch and (ii) a contact position in which the first transmitting mechanism is in contact with the clutch, while the high-speed gear stage is established in the high-low switching mechanism.
A lubrication system includes a reserve housing configured to retain a lubrication fluid. A supply line in fluid communication with the reserve housing is configured to provide pressurized lubrication fluid to the reserve housing. An overflow tube has an overflow port, the overflow tube being configured to prevent the volume of the lubrication fluid from exceeding a certain amount. A metering jet is configured to allow the lubrication fluid to flow from the reserve housing onto a component, such as a bearing, in the gearbox at a predetermined rate. The metering jet provides flow of the lubrication fluid onto the bearing even when the supply line no longer provides pressurized lubrication fluid to the reserve housing.
A cooling and lubricating device for a transmission for a wind turbine includes a transmission oil tank for storing transmission oil for the transmission, a transmission oil line system for carrying the transmission oil between the transmission oil tank and the transmission, a hydraulic oil tank for storing hydraulic oil, a hydraulic oil line system for carrying the hydraulic oil, a hydraulic oil conveying device for conveying the hydraulic oil through the hydraulic oil line system, an energy accumulator for at least temporarily maintaining a pressure within the hydraulic oil line system, the energy accumulator chargeable using the hydraulic oil conveyed by the hydraulic oil conveying device; and a transmission oil conveying device coupled to the hydraulic oil line system and to the transmission oil line system and configured to be driven by the hydraulic oil in order to convey the transmission oil to the transmission.
A gear arrangement with a divided spur toothing includes a main gear and a gear rotatable to the latter in a circumferential direction. The main gear has a hub on which the rotatable gear is arranged. A spring element is arranged between the main gear and the rotatable gear. With the spring element, the rotatable gear is pretensioned in the circumferential direction against the main gear. A first spur toothing part of the spur toothing is formed on the main gear and a second spur toothing part of the spur toothing is formed on the rotatable gear. The first spur toothing part has a first axis of rotation and the second spur toothing part has a second axis of rotation. The second axis of rotation of the second spur toothing part is offset relative to the first axis of rotation of the first spur toothing part.
A friction-type continuously variable transmission includes first to third rolling elements of which are annular and is centered on a principal axis, planetary rollers arranged in a circumferential direction about the principal axis, support pins arranged to rotatably support the planetary rollers, and a planetary roller support portion arranged to support each support pin such that the support pin is capable of inclining in a section including the principal axis. Each planetary roller includes a recessed portion in the shape of a circular ring in an outer circumference thereof centered on the support pin. The first rolling element is arranged to make contact with a rolling contact surface of the planetary roller from one side in a radial direction axially below the recessed portion. The first rolling element is arranged to make contact with the rolling contact surface of the planetary roller from the one side in the radial direction axially above the recessed portion. The third rolling element is arranged to make contact with the recessed portion of the planetary roller from an opposite side in the radial direction, and is supported to be capable of moving in a vertical direction relative to the planetary roller support portion.
A planetary gear train of an automatic transmission for a vehicle may include a first planetary gear set, a second planetary gear set, a third planetary gear set, a fourth planetary gear set, an input shaft mounted with the first and second planetary gear sets at an external circumference of the input shaft, an output shaft disposed in parallel with the input shaft and mounted with the third and fourth planetary gear sets on an external circumference of the output shaft, a first shaft, a second shaft, a third shaft directly connected with the input shaft, a fourth shaft, a fifth shaft, a sixth shaft gear-meshed with the fourth shaft, a seventh shaft engaged with the third shaft selectively, an eighth shaft directly connected with the output shaft, a ninth shaft, and transfer gears each gear-meshed with at least one of the shafts.
A wheel balance device for a motorcycle attachable to a motorcycle wheel rim. The wheel balance device includes a pedestal vertically attachable to a crown of an inner rim of the motorcycle wheel rim in a position between a pair of spokes on opposite side of the crown and having a first end attachable to the crown, a second end, an outer wall therebetween, a transverse orifice therethrough, and a longitudinal channel continuously disposed therethrough. A weight body, having an arc substantially conforming to a shape of the inner rim, is insertable through the transverse orifice and has a hole transversely disposed therethrough, which is alignable with the channel when the weight body is inserted into the transverse orifice. A fastener, which engages both the channel pedestal and the hole of the weight body, secures the weight body to the pedestal.
A vibration absorber (1) with radially acting hydraulic damping has a bearing core (2). A bearing cage (4) radially surrounding the bearing core (2) and an elastomer body (18) resiliently connects the bearing core (2) and the bearing cage (4). An outer sleeve (24) radially surrounds the elastomer body (18) for connection to an absorber mass (40). At least two working chambers (28) to be filled with a damping fluid are formed in the elastomer body (18). The working chambers (28) are connected fluidically to one another by means of a dimensionally stable fluid duct (26).
A vibration isolator includes a housing forming an internal cavity, an elastomeric diaphragm within the internal cavity, the elastomeric diaphragm combining with a first end of the housing to form an air spring within the internal cavity, a mechanical spring in series with the air spring within the internal cavity; a mount in series with the mechanical spring opposite the air spring, an annular elastomeric stopper between a second end of the housing and the mount, wherein the mount and the annular elastomeric stopper combine to seal the second end of the housing to form a chamber within the internal cavity between the elastomeric diaphragm and the second end of the housing, and a plate seated on the mount within the chamber.
A shock absorber for a vehicle is disclosed which has a pressure tube defining a fluid chamber, a piston rod, and a piston disposed within the fluid chamber, and carried on the piston rod, which divides the fluid chamber into upper and lower working chambers, and which has a plurality of passages extending between the upper and lower working chambers. A valve disc assembly controls a flow of fluid, and includes a spring disc. The spring disc has a non-symmetrical circumferential shape which enables a stiffness of the valve disc assembly to be tailored so that it begins to open at a first peripheral point, and continuously gradually opens about a non-symmetrical circumferential path until reaching a second peripheral point adjacent the first peripheral point.
One embodiment provides a shock absorber. The shock absorber includes a reservoir communication path through which a damping force generator and a reservoir communicate with each other, a compression-side communication path through which a piston-side oil chamber and the damping force generator communicate with each other, and a compression-side inlet port which is provided in the damping force generator and into which oil flows from the compression-side communication path and which has a compression-side valve that generates damping force. The cross-sectional area of the reservoir communication path is smaller than the cross-sectional area of the compression-side inlet port.
There is provided a translational inerter assembly for damping movement of a flight control surface of an aircraft. The assembly has a press fit element fixedly disposed within a first end of the flight control surface and rotatably movable with the flight control surface. The assembly further has an inertia element coupled to and installed in the press fit element. The assembly further has a torsion bar having a torsion bar first end coupled to and installed in the inertia element, and having a torsion bar second end fixedly attached to a support structure of the aircraft. Rotation of the flight control surface causes translational movement of the inertia element, via the press fit element, along a hinge axis of the flight control surface and along the torsion bar, resulting in the translational inerter assembly damping movement of the flight control surface.
An aircraft wheel braking arrangement may comprise a landing gear structure, a torque tube extending in an outboard direction from the landing gear structure, and an actuator housing disposed outboard from the torque tube. An actuator piston may extend in an inboard direction from the actuator housing for applying a force to a brake stack surrounding the torque tube. In various embodiments, a back plate is non-integral to the torque tube and may be disposed inboard of an end plate of the brake stack or the landing gear structure itself may act as the back plate. The back plate and/or the end plate may provide a direct thermal path from the brake stack to a landing gear structure.
A double cardan yoke joint is disclosed. The double cardan yoke joint comprises a housing having an axial direction. The housing includes a top end and a bottom end. The double cardan yoke joint further comprises at least four flanges positioned inwardly with respect to the axial direction of the housing. The two of the at least four flanges are provided on the top end of the housing and remaining two of the at least four flanges are provided on the bottom end of the housing. The housing is a circular housing with a single weld. The single weld is disposed along the axial direction of the housing.
Rolling bearings are stacked with their center lines extending in a vertical direction. Each of the rolling bearings has an inner ring, an outer ring, a plurality of balls, and an annular cage. Each of the rolling bearings has a structure that induces, upon rotation, an action that causes lubricating oil to flow upward along the outer ring in the annular space. The cage has an annular portion provided adjacently below the balls to prevent air from moving to the outer ring side from the inner ring side.
Provided is a fluid dynamic bearing device (1), including: a bearing sleeve (8) made of sintered metal; a rotary member (2) including a shaft portion (21) and a hub portion (23); and first and second thrust bearing portions (T1, T2) that form thrust bearing gaps respectively on an upper end surface (8b) and a lower end surface (8c) of the bearing sleeve (8) along with rotation of the rotary member (2). At least an outer peripheral surface of the bearing sleeve (8) is subjected to pore sealing treatment. A sealing gap (S) for retaining an oil surface of lubricating oil is made along a tapered outer peripheral surface (8d1) of the bearing sleeve (8). A lid member (10) having a bottomed cylindrical shape being fixed to an outer periphery of a lower end of the bearing sleeve (8).
A clamp assembly includes a single adjustment mechanism that allows for adjustment of an object supported on the clamp assembly along two axes. The adjustment mechanism connects to a bracket and a support rod on which the object is mounted to lock a desired position of the object in place when desired and to allow for adjustment of that position, when desired.
An engagement fan includes a fan base, a cover plate and a fan base plate. The fan base has an opening at the bottom surface thereof. The rim of the opening is disposed with at least one engagement slot and at least one restricting protrusion. The cover plate covers the fan base. The engagement protrusion engages to the corresponding engagement slot such that the fan base plate can be attached to the opening of the fan base.
An apparatus comprises a gas turbine engine having a compressor. The compressor airfoil member is disposed in the compressor and has a camber angle variation along a chord and a concave pressure side surface at a tip portion of the compressor airfoil member from a leading edge to an intermediate-chord location. This first camber shape results in a normalized camber angle that reaches at least 0.4 in the first 10% of normalized chord, and the normalized camber angle is defined as β ′ = β i - β β i - β e where βi is inlet metal angle, βe is exit metal angle, and β is a camber angle at a given chord location.
An exhaust fan assembly, powered by solar energy, that is specially designed for use with portable toilets as well as other small, enclosed spaces. Design intent is to provide a convenient, energy efficient means of keeping these units ventilated.
Disclosed is a discharge muffler for a compressor constructed as an inner duct extending inside an outer duct, the inner duct being open at each end and the outer duct being open only at the muffler inlet. The inner duct has a plurality of holes communicating with the outer duct. At least two of the holes are at different distances from the muffler outlet.
Cryogenic pump apparatuses include nanostructure material to achieve an ultra-high vacuum level. The nanostructure material can be mixed with either an adsorbent material or a fixed glue layer which is utilized to fix the adsorbent material. The nanostructure material's good thermal conductivity and adsorption properties help to lower working temperature and extend regeneration cycle of the cryogenic pumps.
A method of retrofitting vortex generators on a wind turbine blade is disclosed, the wind turbine blade being mounted on a wind turbine hub and extending in a longitudinal direction and having a tip end and a root end, the wind turbine blade further comprising a profiled contour including a pressure side and a suction side, as well as a leading edge and a trailing edge with a chord having a chord length extending there between, the profiled contour, when being impacted by an incident airflow, generating a lift. The method comprises identifying a separation line on the suction side of the wind turbine blade, and mounting one or more vortex panels including a first vortex panel comprising at least one vortex generator on the suction side of the wind turbine blade between the separation line and the leading edge of the wind turbine blade.
A vehicle includes an internal combustion engine having an auto stop function, an electric pump motor drivably coupled to a transmission pump and a heat exchanger pump, and at least one controller. The controller is configured to control the pump motor to operate the transmission pump to supply hydraulic pressure to a transmission, and to operate the heat exchanger pump to provide flow from the engine to a heater core radiator in response to the engine being auto stopped.
A timing-based method for regenerating a DOC included in an aftertreatment system fluidly coupled to a dual-fuel engine comprises performing at least one of the following: a temperature of the DOC is varied while flowing a mixed exhaust gas, which comprises a mixture of a diesel-only exhaust gas and a natural gas exhaust gas, generated by the dual-fuel engine through the DOC; alternately the method includes flowing (a) the mixed exhaust gas generated by the dual-fuel engine and (b) a diesel-only exhaust gas generated by the dual-fuel engine through the DOC.
A cylinder head integrated with an exhaust manifold and an exhaust gas recirculation (EGR) cooler may include an exhaust manifold including a plurality of connection parts connected to a plurality of exhaust ports, respectively, and an extension part connected to a plurality of connection parts, a water jacket provided at a location adjacent to the exhaust manifold, and an EGR cooler communicating with the water jacket and configured to surround an outside of the extension part of the exhaust manifold.
An internal-combustion engine has a crankcase, with at least one cylinder for accommodating a piston, the inner face of which cylinder is provided with a coating forming a running surface for the piston. The coating has a plurality of pores and the average size of the pores and/or the pore surface proportion varies over the length of the cylinder.
A control system for an internal combustion engine, which is capable of quickly and properly ensuring excellent fuel economy of the engine even when atmospheric pressure has changed. The control system includes an ECU. The ECU performs weighted average calculation on lowland map values and highland map values, based on atmospheric pressure, to thereby calculate map values of a demanded torque that minimize a fuel consumption ratio of the engine in the atmospheric pressure, and calculates engine demanded output. The ECU calculates demanded torque and demanded engine speed using the map values and the engine demanded output, respectively. The ECU controls the engine using the demanded torque.
A step-down circuit is connected to an output of a step-up circuit that steps up a battery voltage, and an output of the step-down circuit is connected to a power supply input terminal of a CPU via an FET. The step-down circuit is normally maintained in an inactive state and, in response to an ignition switch being turned off, the CPU causes the step-down circuit to actuate and a stepped-down voltage (equal to a stabilized voltage) is output from the step-down circuit. The stepped-down voltage is further stepped down to a CPU power supply voltage, and the CPU power supply voltage is supplied to the power supply input terminal of the CPU. This allows the residual charge of the step-up circuit to be dissipated by the step-down circuit and the CPU.
An engine system having an exhaust gas recirculation (EGR) apparatus includes: an engine including a plurality of combustion chambers; an intake line through which an intake gas supplied to the combustion chambers flows; an exhaust line in which an exhaust gas discharged from the combustion chambers flows; and a turbocharger including: a turbine disposed at the exhaust line and rotating by the exhaust gas; and a compressor disposed in the intake line and rotating and compressing external air. The EGR apparatus includes a recirculation line branched from the exhaust line; an EGR valve disposed at the recirculation line and adjusting a recirculation gas amount; a pressure sensor disposed at a front end of the EGR valve to measure a pressure of a recirculation gas; and a flow rate adjustment apparatus disposed at a rear end of the EGR valve and adjusting the recirculation gas amount.
Operating a dual fuel engine system includes firing combustion cylinders on a liquid fuel or both the liquid fuel and a gaseous fuel, and selectively cutting out at least one of the combustion cylinders based on a cylinder pressure parameter. A subset of those combustion cylinders remaining active after cylinder cutout is fired at a gas-to-liquid substitution ratio based on a user-settable combustion optimization term. The optimization term can include an efficiency term, an emissions term, and/or a fuel cost term, each of which has a finite range of values including a diesel equivalency value.
A method for controlling valve timing of a continuous variable valve duration engine may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap between an exhaust valve and an intake valve by using an exhaust valve closing (EVC) timing in a first control region; advancing an intake valve closing (IVC) timing and applying a maximum duration to the exhaust valve in a second control region; advancing the IVC timing and the EVC timing in a third control region; controlling the EVC timing in a fourth control region; controlling a throttle valve to be fully opened and controlling the IVC timing in a fifth control region; and controlling the throttle valve to be fully opened and advancing the IVC timing in a sixth control region.
A heat shield (44) for an external component, such as a gearbox (42), of a gas turbine engine (20) for limiting heat transfer from the engine (20) to the external component is disclosed. The heat shield (44) may be formed to the shape of the gearbox (42) to reduce the geometric envelope of the gearbox (42) and heat shield (44). The heat shield (44) may be formed by a thin thermal insulation core (50) surrounded by a metal sheet (51). The small thickness of the heat shield (44) also reduces the geometric envelope of the heat shield (44). Since no extra equipment is needed to provide cooling fluid to the gearbox (42), the heat shield (44) reduces the overall weight of the gas turbine engine (20) as well.
A fuel circuit of a turbomachine, this circuit including a fuel return valve connected to the main fuel circuit and to a tank, the valve being able to take a first and a second open position, separate from one another, and a closed position, two primary hydraulic lines connecting the valve to the main circuit and including, respectively, first and second filters through which the fuel passes when the valve is in its first open position, two secondary hydraulic lines which connect the valve to the main circuit and which are positioned in relation to the first and second filters in such a way that the circulation of fuel in these secondary lines contributes, respectively, to the cleaning of the first and second filters, the fuel circulating in the secondary lines when the valve is in its second open position.
A modulating fan air diverter and annular air-oil cooler for a gas turbine engine located in the inner fixed structure adjacent to the core cowl is provided. The fan air diverter modulates between an open position, corresponding to maximum fan nozzle area and airflow through the air-oil cooler, and a closed position, corresponding to minimum fan nozzle area and airflow through the air-oil cooler. As such, the device is capable of supporting dual functions of engine heat management as well as engine performance and fan stability.
A gas turbine engine according to an exemplary aspect of the present disclosure includes, a shaft including at least one bearing, a speed change device in communication with the shaft, a first lubrication system in communication with the at least one bearing and a second lubrication system in communication with the speed change device.
An engine comprises a crankcase and a crankshaft. The crankshaft has a central main portion, a crankpin and a crankshaft web. A crank member is rotatably and eccentrically mounted on the crankpin. An external crank member gear meshes with an external drive shaft gear. A driven portion of the drive shaft is located at a side of the crankshaft web which is opposite to its side where the crankpin is located and is drivably coupled via a first transmission to an intermediate member which is rotatably mounted to the crankshaft. The intermediate member is drivably coupled to a control shaft portion of a control shaft via a second transmission which control shaft portion is located at axial distance of the driven portion of the drive shaft and the control shaft is rotatable at a fixed rotational position with respect to the crankcase under operating conditions at fixed compression ratio.
A method of combusting fuel, e.g. heavy fuel, in a rotary engine, including injecting a main quantity of fuel directly into a combustion chamber to form a first fuel-air mixture having a first air-fuel equivalence ratio λ higher than 1, injecting a pilot quantity of fuel into a pilot subchamber to form a second fuel-air mixture having a second air-fuel equivalence ratio λ smaller than the first air-fuel equivalence ratio, igniting the second fuel-air mixture within the pilot subchamber, using the ignited second fuel-air mixture from the pilot subchamber to ignite the first fuel-air mixture, and injecting a supplemental quantity of fuel directly into the combustion chamber after igniting the first fuel-air mixture, upstream of an exhaust port of the rotary engine with respect to a direction of rotation of the rotor. A rotary engine with interburner fuel injector is also discussed.
In a method for operating an SCR catalytic converter system of an internal combustion engine, the SCR catalytic converter system comprises at least one SCR catalytic converter (30) and at least one upstream SCR-coated particulate filter (20). In order to inject liquid reducing agent for the SCR catalytic converter (30) and/or for the SCR-coated particulate filter (20), a first injection position is provided upstream of the SCR-coated particulate filter (20) in the form of a first metering device (40) and a second injection position is provided upstream of the SCR catalytic converter (30) and downstream of the SCR-coated particulate filter (20) in the form of a second metering device (50). The injection positions for the injection of liquid reducing agent are selected in a manner which is dependent on the operating states of the SCR catalytic converter system.
A method for improving automobile exhaust is disclosed. A catalytic converter is cooled down. The outer surface of the catalytic converter is covered with an infrared thermal radiation material, or black anodizing is carried out on the outer surface. Therefore, the surface thermal radiation of the catalytic converter is improved, and the catalytic converter can be kept being operated under a normal working temperature.
An exhaust gas purifying device includes: a columnar honeycomb carrier in which a plurality of cells which extend from an exhaust gas inflow side to an outflow side, and which serve as exhaust gas flow paths, are demarcated and formed by means of porous separating walls, a three-way catalyst supported in the honeycomb carrier, and a cylindrical case member in which the honeycomb carrier is housed, with the interposition of a retaining member. The honeycomb carrier includes outer circumferential plugging portions formed in such a way as to plug, to a prescribed depth, openings of cells in an outer circumferential portion of at least one end surface of the two end surfaces, in the central axis X-direction, of the honeycomb carrier, and inclined portions formed in a direction whereby the length, in the central axis X-direction, of the outer circumferential plugging portions decreases toward the outer circumferential edge.
Systems and methods for operating an engine that includes an exhaust gas heat recovery system are described. The system may reduce engine warm-up time and increase an amount of time an engine of a hybrid vehicle is deactivated while the hybrid vehicle is powered by a motor. In one example, a phase change material selectively stores and releases exhaust gas energy from and engine to improve vehicle operation.
A monolithic rocker arm component includes a first lateral wall defining a first aperture and a first mass reducing feature, an opposing second wall defining a second aperture and a second mass reducing feature, a pushrod receiving member that bridges the first lateral wall and the second lateral wall at a first end of the rocker arm, and a tongue element that bridges the first lateral wall and the second lateral wall at a second end of the rocker arm. The pushrod receiving member routes oil from the first towards the second end. The monolithic rocker arm may have one or more internal regions having lattice structures. Methods for additive manufacturing the monolithic rocker component are also provided.
Disclosed illustrative embodiments include systems and methods for power peaking with energy storage. In an illustrative, non-limiting embodiment, a power plant includes a thermodynamic piping circuit having a working fluid contained therein, and the working fluid has a flow direction and a flow rate. Power plant components are interposed in the thermodynamic piping circuit. The power plant components include a compressor system, a recuperator system, a heat source, a turbine system, a heat rejection system, and a thermal energy storage system. A valving system is operable to selectively couple the heat rejection system, the thermal energy storage system, and the compressor system in thermohydraulic communication with the working fluid maintaining the flow direction and the flow rate to implement a thermodynamic cycle chosen from a Brayton cycle, a combination Brayton cycle/refrigeration cycle, and a Rankine cycle.
An assembly is provided for an aircraft propulsion system. The assembly includes a first component, a second component and a seal assembly configured to seal a gap between the first and the second components. The seal assembly includes a metal spring seal element and an elastomeric seal element. The metal spring seal element is mounted to the first component. The metal spring seal element is sealingly engaged with the second component. The elastomeric seal element is mounted to the metal spring seal element. The elastomeric seal element is sealingly engaged with the second component.
A turbomachine includes a plurality of transition ducts disposed in a generally annular array. An outlet of each of the plurality of transition ducts is offset from an inlet along the longitudinal axis and the tangential axis. Each of the plurality of transition ducts further includes an upstream portion and a downstream portion, the upstream portion extending between the inlet and an aft end, the downstream portion extending between a head end and the outlet. The turbomachine further includes a support ring assembly downstream of the plurality of transition ducts along a hot gas path. The turbomachine further includes a plurality of support assemblies directly connecting the upstream portion of at least one transition duct of the plurality of transition ducts to the support ring assembly. Each of the plurality of support assemblies includes a rod extending between the upstream portion and the support ring assembly.
A gas turbine engine system comprises a rotor wheel, a plurality of blades, a lockwire and a locking key. The rotor wheel comprises a plurality of axial grooves extending through a periphery of the rotor wheel, and a plurality of posts formed between adjacent slots, each post having a circumferential slot. The blades are mounted in the axial grooves of the rotor wheel, each blade having a circumferential slot circumferentially aligned with the circumferential slots of the posts. The lockwire extends across the plurality of axial grooves of the rotor wheel within each of the circumferential slots of the posts and the blades from a first end to a second end to inhibit axial displacement of the blades within the grooves. The locking key is disposed between the first and second ends of the lockwire and provides support to at least one of the ends of the lockwire to prevent radially inward displacement.
A rotor for a turbo-machine, the rotor having a rotational axis and circumferentially spaced-apart radially extending blades of aerofoil configuration, each blade having a suction side, an oppositely directed pressure side, and a pair of oppositely directed snubbers each of which extends from a respective side towards a circumferentially adjacent blade and presents an abutment surface for abutment with the abutment surface of a respective adjacent snubber extending from the adjacent blade. Each snubber is configured such that its abutment surface makes an acute snubber angle to the axis of rotation. At least one pair of adjacent snubbers are configured such that their abutment surfaces are at an equal first snubber angle, with all of the other snubbers being configured such that their abutment surfaces are at equal second snubber angles. The first snubber angle is larger than the second snubber angle.
A conveyor includes an endless belt, a boot end supporting a portion of the endless belt, a support structure, and a bridge. The endless belt includes a first run and a second run, and the first run extends along a conveyor axis. The support structure includes an end spaced apart from the boot end, a plurality of frames, and a plurality of idler rolls. The frames are spaced apart from one another and aligned with one another in a direction parallel to the conveyor axis. The idler rolls support another portion of the endless belt. The bridge extends between the boot end and the end of the support structure. The bridge is movable in a direction parallel to the conveyor axis relative to at least one of the boot end and the support structure.
A magnetostrictive transducer system included as part of a drill string for use downhole in a well to convey signals across regions of the drill string that preclude the use of wired communication elements. The magnetostrictive transducer conveys a carrier signal as an acoustic wave through a drill collar region to an acoustic telemetry receiver, which passes an output both to an uphole processing system and back into the magnetostrictive transducer system. The output signal and carrier signal are compared to determine sub-harmonics or higher order harmonics of the output or carrier signal indicative of offset in the magnetostrictive core of the magnetostrictive transducer system, and provides a corrective component signal to automatically adjust the magnetostrictive core though preloading forces.
Methods, apparatuses, and computer readable medium including computer program products, are provided for determining the depth of water in a well. A method may include coupling a signal onto a cable connected to a submersible well pump. The method may further include monitoring the cable to determine a first time corresponding to a first reflection of the signal caused by the cable entering a water column between a water surface and the submersible pump. The method may further include monitoring the cable to determine a second time corresponding to a second reflection of the signal caused by an impedance mismatch between the cable surrounded by water and a motor in the submersible well pump. The method may further include determining a water height between the submersible pump and the water surface from the first time and the second time.
A system for ranging between two wellbores where an emitter electrode and return electrode of a current injection system are disposed to drive a current to a conductive member within a target wellbore to create an electromagnetic field about the conductive member. The electromagnetic field is measured utilizing a sensor disposed in an investigative wellbore, which may be in the process of being drilled. In some embodiments, the emitter electrode and return electrode are positioned on the surface of a formation, spaced apart from one another with locations on the surface selected to optimize current, and therefore, the electromagnetic field, at a desired point along the conductive member. In some embodiments, one or both of the emitter electrode and return electrode are positioned in the target wellbore.
Systems and methods are provided for monitoring micro-electro-mechanical (“MEM”) devices removed from a fluid flow stream from a wellbore by a component of solids control equipment used with a drilling operation. The system can include a first MEM reader. The system can also include a second MEM reader. The first MEM reader can be positionable proximate to the fluid flow stream for detecting MEM devices in the fluid flow stream. The second MEM reader can be positionable proximate to the fluid flow stream and between the fluid flow output and the wellbore for detecting at least a subset of the MEM devices in the fluid flow stream. The system can further include a computing device for determining an amount and types of the MEM devices removed from the fluid flow stream by the component of solids control equipment.
A technique facilitates regulation of flow through a flow control device to improve a well operation, such as a production operation. The technique utilizes a flow control device which has a valve positioned in a housing for movement between flow positions. The different flow positions allow different levels of flow through a primary flow port. At least one flow regulation element is used in cooperation with and in series with the valve to establish a differential pressure acting on the valve. The differential pressure is a function of fluid properties and is used to autonomously actuate the flow control device to an improved flow position.
An example drill bit includes a bit body defining at least one pocket, and a support arm attachable to the bit body at the at least one pocket and including a coupling that extends from the support arm. A roller cone defines a cavity for receiving the coupling to rotatably mount the roller cone on the coupling. A direct drive electrical power generator is positioned within the coupling and is operatively coupled to the roller cone such that rotation of the roller cone correspondingly rotates a portion of the direct drive electrical power generator to generate electrical power.
An apparatus for supplying power at the surface and in a wellbore may include a downhole tool conveyed into the wellbore and a battery bank conveyed by the downhole tool. The battery bank may include a plurality of battery cells, wherein at least two cells of the plurality of battery cells have substantially different power responses to a change in an ambient temperature at the downhole tool.
A cover configured to dispose over a treatment port of a downhole treatment tool, the cover comprising a dissolvable material. A system for protecting treatment ports in a downhole treatment tool, the treatment tool having an outer surface and an inner bore, the inner bore in fluid communication with the outer surface through one or more treatment port orifices disposed on the outer surface of the treatment tool, and a dissolvable treatment port cover disposed in the fluid communication path of the treatment port. A method for treatment of a well including the steps of locating a treatment tool in a well, the treatment tool having a treatment port and a cover over the treatment port; setting an activation tool in the well; placing a treatment, applying pressure to rupture the cover; and unsetting the activation tool.
Variable flow, internally adjustable choke (100) configured to be incorporated into a production tubing (200) of a subterranean well (300). The internally adjustable choke (100) includes a cylindrical choke body (102) having a longitudinal centerline (104); a cylindrical flow adjustment sleeve (110) concentrically and interiorly located with respect to the body (102); a plurality of fluid inlets (120) into the body (102) that establish fluid communication from outside the body (102) to an inlet annular reservoir (122) within the body (102); a pair of cylindrical, longitudinally aligned annular rings (130, 132), each ring (130, 132) having a plurality of longitudinally oriented flow ports 140 therethrough; an outlet annular reservoir (160) within the body (102); and a plurality of open ports (170) through the sleeve (110), each at least partially radially aligned with the outlet annular reservoir (160) and open thereto for fluid communication therewith.
A system includes a choke valve having a fluid inlet configured to receive a fluid at a first pressure and a fluid outlet configured to output the fluid at a second pressure. The choke valve also includes a fixed component and a movable component defining a throttling orifice between the fluid inlet and the fluid outlet. Additionally, the movable component is configured to automatically move relative to the fixed component in response to a change in the first pressure to maintain a consistent percent pressure drop between the first pressure at the fluid inlet and the second pressure at the fluid outlet.
A drill string apparatus includes an upper casing section having a port collar. The port collar provides a controllable opening from an interior of the upper casing section to an annulus around the upper casing section. A lower casing section is coupled to the upper casing section through a swivel. The lower casing section includes an external casing packer and a casing pad coupled to an external portion of the lower casing section. The external casing packer is expandable to an annulus around the lower casing section before a cement operation to avoid cement loss circulation to weak formation below the packer.
A rotating control device for a tubular string includes a body, a housing assembly, and a clamp device. An annulus is formed between the body and the tubular string. The housing assembly includes an annular seal configured to seal off an annulus between the tubular string and the body. The clamp device is configured to selectively permit and prevent displacement of the housing assembly relative to the body. The clamp device includes a first clamp section and a second clamp section coupled to and pivotable about a pivot, and a motor positioned between an end of the first clamp section and an end of the second clamp section, wherein the motor is configured to move the ends of the first and second clamp sections relative to each other.
An autonomous BOP system is provided for stopping an uncontrolled flow of formation hydrocarbons comprising two or more sensors distributed along a length of a subsea blowout preventer to monitor a drill pipe inside a blowout preventer and measure critical parameters. A subsea computer using predictive-software monitors a blowout preventer along with material critical parameters and calculates a blowout preventer configuration and sequence to arrest a well blowout. Blowout preventer components are fine-tuned and operational modes are added to aid an arrest of a well blowout under realistic conditions.
A suction port and check valve assembly for use with a pump head. The assembly comprises a port body and a check valve. The port body may have an inlet side, an outlet side, and a top, and may comprise a horizontal bore extending from the inlet side to the outlet side and a vertical bore extending from the top to the horizontal bore. The check valve may comprise a valve seat, where the valve seat rests atop the port body with only a gasket therebetween, and a valve body atop the valve seat. The port body may attach to the pump head via alignment spacers, such as springs, minimizing misalignment and resulting leaks.
A method for positioning a pipe stand in a fingerboard having fingers with a pipe racking apparatus includes gripping the pipe stand with an upper grabber and gripping the pipe stand with a lower grabber. The method also includes moving the pipe stand until it is aligned with a rack slot between two fingers of the fingerboard and extending the upper and lower grabbers to position the pipe stand in the rack slot. The method includes tilting the pipe stand in a first direction by moving one or both of the upper and lower grabbers in the first direction and tilting the pipe stand in a second direction. The method also includes lowering the pipe stand into contact with a setback of a drill floor, moving the pipe stand in the second direction until the pipe stand leans against the fingerboard, and releasing the pipe stand.
A system includes a wear bushing retrieval tool. The wear bushing retrieval tool includes a main body, a plurality of apertures extending from an inner diameter of the annular main body to an outer diameter of the annular main body, a plurality of fasteners, wherein each of the plurality of fasteners is disposed within a respective one of the plurality of apertures, and a plurality of pins extending from the outer diameter of the annular main body, wherein the annular main body is configured to be disposed about a tubular string being run into a wellhead, and wherein the plurality of pins is configured to engage with a wear bushing disposed within the wellhead.
An anti-friction device is associated with a drilling element, the drilling element having a substantially cylindrical shape, with a first outside diameter (d1) and a longitudinal extension along a first axis (X). The drilling element includes at least one housing for receiving the anti-friction device. The anti-friction device has a hollow cylindrical shape having an inside diameter (d) which is smaller than the first diameter (d1) of the drilling element and an outside diameter (D) which is greater than the first diameter (d1) of the drilling element. The anti-friction device is adapted to rotate about the first axis (X) in the housing, independently of the drilling element.
A receptacle for an associated appliance hinge includes a receptacle base and a breakaway lever movably connected to the receptacle base. The breakaway lever includes a cam edge. A first mounting structure is connected to the receptacle base and adapted to be engaged by an associated hinge arm. A second mounting structure connected to the breakaway lever such that the second mounting structure is movable relative to the receptacle base. The second mounting structure is adapted to be engaged by the associated hinge arm. A breakaway latch is connected to the base and includes a cam follower engaged with the cam edge. The breakaway latch further includes a spring that biases the cam follower into abutment with the cam edge. The breakaway lever is selectively movable from a first position where the cam follower is engaged with a first location on the cam edge to a second position where the cam follower is engaged with a second location on the cam edge.
An electric door lock includes a lock device and an electric control device. The lock device includes a latch bolt, an inner cover seat, and a handle mechanism driving movement of the latch bolt. The inner cover seat has an inner cover having an inner receiving room, and a window that is communicated with the inner receiving room. The electric control device electrically controls the lock device, and includes a middle circuit board fixedly received in the inner receiving room, and an inner circuit board removably received in the inner receiving room, removably connected to the middle circuit board, corresponding to the window in position, and removable from the inner receiving room through the window.
A collapsible canopy has a collapsible frame and a canopy cover supported by the collapsible frame. In some configurations, the frame includes telescopic legs having three or more stages. An automatic lock release is carried by one of the legs and automatically releases a lock between two other of the legs. A relative inner leg can include a cap having a resilient portion that contacts an inner surface of a relative outer leg to increase a lateral rigidity of the leg assembly. At least one of the eave cross members can have an end portion having an abutting extension that contacts an adjacent cross member to limit lateral deflection of the eave. The abutting extension can be positioned between eave cross members that incorporate a bracket for supporting a center support that extends from the eave toward a center or interior of the canopy.
The present invention is directed to a flexible concrete form system having both flexible and rigid parts that are easily assembled and disassembled using a multi-contact point connection system. The concrete form system can be extended or stacked in a wide variety of configurations to accommodate almost any desired concrete shape.
The cove base molding strip includes a body including a planar portion having a front surface and a rear surface and a curved portion having a concave surface continuous with the front surface and a convex surface continuous with the rear surface. The rear surface includes at least a first channel. A cove anchor projects from the convex surface, and the intersection of the front surface and the rear surface define a rounded tip that projects from the planar portion.
Installable temporary modular floor configured to be arranged on a surface to be protected so as to temporarily cover/face said surface. The floor comprises at least two panels, which are arranged side by side in adjacent positions, substantially coplanar to each other. The panels are provided on the relative sides with at least one recess that defines, with a corresponding recess made in one side of an adjacent panel, a seat. The floor also comprises at least one connecting plate, which is configured to be engaged in the seat to make the joint coupling of said panels.
A screen device (I), comprising a covering which comprises a beam (2, 3, 4) as a structural part (2, 3, 4) of the covering and which is attachable to at least one adjacent structural part (2, 3, 4, 5) of the screen device (I), and comprises a end cap (6, 6′) which is attachable to one end of the beam (2, 3, 4) in order to attach the beam (2, 3, 4) to the adjacent structural part (2, 3, 4, 5) of the screen device (I).
A method of producing a plate-like construction having a double-wall structure and its use. According to the present invention, several elongated profiles which have essentially straight central axes are arranged against each other in such a way that adjacent hollow profiles abut each other and together form, in general terms, a flat stack having two opposite sides. The hollow profiles are welded together in order to join them with welded seams, in which case the welding is essentially carried out simultaneously from both sides of the stack. Besides good flexural strength and the opportunity to recycle, thermoplastic plates which are produced by means of the present method exhibit resistance to corrosion, decay and mould.
The invention relates to a modular building (2), to be assembled in various sizes and in various environments, having a generally triangular transverse sectional profile, wherein the modular building comprises a double sloping roof (6) over the generally triangular transverse sectional profile, and wherein the one or more double sloping roof panels comprise composite panel material.
A siphonic flush toilet system and method of priming the same having a toilet bowl assembly comprising at least one jet flush valve assembly and at least one rim valve; and bowl having a rim and a jet defining at least one jet channel, the at least one jet channel having an inlet port and a jet outlet port configured for discharging fluid to a sump area, wherein the sump area is in fluid communication with a trapway. The bowl has a closed jet pathway including the jet channel and extending from the jet flush valve assembly outlet to the jet channel outlet port to maintain the jet channel in a primed state with fluid from the jet flush valve assembly so as to assist in preventing air from entering the closed jet pathway. Flush valves are also disclosed having back-flow preventer mechanisms and/or at least partly flexible valve covers for use with the toilet systems and methods herein.
A flush toilet includes a bowl having a waste-receiving surface and a rim; on either the left or right side inside the front area of this bowl, a rim water passageway is formed and a rim spouting port is formed; the water passageway formed at the downstream side of this rim spouting port forms a flow path cross section with the inner circumferential surface of the rim, the shelf surface formed under this inner circumferential surface, and the overhang portion formed over the inner circumferential surface; the height dimension of the flow path cross section is set to increase with distance on the downstream side, and the width thereof is set to decrease with distance on the downstream side, so that from the rim spout port toward the downstream side, the cross sectional area of the flow path cross section is approximately constant.
A sanitary apparatus includes: a fan; an air-blowing passage provided on a downstream side from the fan and includes a first air-blowing passage and a second air-blowing passage partitioned from each other; a heater for heating air of the first air-blowing passage; and an ion generating device generating ions to be carried by the air blowing of the second air-blowing passage, in which the ion generating device is installed on a downstream side from the heater so that the generated ions join the air blown from the first air-blowing passage by the air blowing of the second air-blowing passage.
An easy-to-install tap structure includes a tap body, a pipe joint and a connecting pipe for communicating the tap body with the pipe joint. The connecting pipe is arranged between the tap body and the pipe joint. When the tap structure is used for a wash basin, there is no need to connect a braided hose; in the process of replacing a tap, there is no need to replace the pipe joint and the connecting pipe, so that the pipe joint and the connecting pipe can be used many times; and when the tap is dismounted, the tap body can be directly rotated, and when the tap is mounted, the connecting pipe is directly adjusted to rotate until the water outlet of the tap is arranged in the correct direction.
A control system for a work machine is disclosed that may include an input device, an electronic controller, and a joystick. The input device may be configured to transmit an electronic selection signal. The electronic controller may be in electronic communication with the input device, be configured to receive the electronic selection signal, and transmit an electronic configuration signal. The joystick may be in operative communication with at least one of a ground engaging member and a work implement and be configured to regulate movement of at least one of these. Further, the joystick may be in electronic communication with the electronic controller and may be configured to move along multiple axes. The joystick may be further configured to receive the electronic configuration signal and be selectively non-movable along at least one of its axes in response to this signal.
A structure includes a bracket and a vertical member. The vertical member includes a vertical member top end and a vertical member bottom end. The vertical member is affixed to the bracket. The structure further includes at least one bumper. The at least one bumper is affixed to the vertical member bottom end via a bumper connecting structure. The structure further includes an arm member. The arm member includes an arm member first end and an arm member second end. The arm member second end is affixed to the vertical member top end. In another aspect, a structure includes a support, and affixed to the support, a bracket. The structure further includes, affixed to the support via a bumper connecting structure, at least one bumper. The structure further includes, affixed to the support, an arm member.
In some embodiments, a clothes dryer vent quick coupling apparatus may include a male element and a female element which may be removably coupled together. The male element may include a body having a male vent aperture in fluid communication with a first hose coupling, a male inlet surface, a male outlet surface, and a handle. The first hose coupling may be disposed on the male inlet surface and the male vent aperture may extend through the body between the male outlet surface and the first hose coupling. The female element may include a receiver having a channel with a female inlet surface and a female outlet surface. A female vent aperture may be in fluid communication with the female outlet surface and may extend from the channel through the receiver. Optionally, the handle may comprise a hollow cavity which may be in fluid communication with the male vent aperture.
A wire netting, in particular a safety net, with a plurality of helices which are braided and at least one of which is manufactured of at least one single wire, a wire bundle, a wire strand, a wire rope and/or another longitudinal element with at least one wire comprising one first leg, one second leg and one bending region, wherein, in a front view perpendicularly to a main extension plane of the helix, the first leg extends with at least one first gradient angle with respect to a longitudinal direction of the helix, wherein, in a transverse view in parallel to the main extension plane of the helix and perpendicularly to the longitudinal direction of the helix, the bending region extends at least section-wise with a second gradient angle with respect to the longitudinal direction of the helix, wherein the second gradient angle differs from the first gradient angle.
A fiber blank woven as a single piece by three-dimensional weaving to make a closed box-structure platform out of composite material for a turbine engine fan. In each plane of the fiber blank, a set of warp yarns interlinks layers of weft yarns in first, second, and third portions of the fiber blank, while leaving a closed non-interlinked zone separating the first and second portions over a fraction of the dimension of the fiber blank in the warp direction between an upstream non-interlinking limit and a downstream non-interlinking limit, and while leaving at least one open non-interlinked zone separating the second and third portions over a fraction of the dimension of the fiber blank in the warp direction from a non-interlinking limit to a downstream edge of the fiber blank. A method of fabricating a preform for the closed box-structure platform can use such a fiber blank.
A card clothing wire (1) for use on drums in cards has a root (2) and a blade (3) having an overall height of the wire (h1) of 1.5 mm to 5 mm. The blade (3) is provided with teeth (4) having a tooth depth (h6) of 0.35 mm to 1.0 mm, and having a tooth pitch (p) of 1.5 mm to 3 mm. The teeth (4) have a tip surface (7), a back surface (8) having a back angle (γ), and a tooth face surface. The back angle (γ) is 40° to 20° and each tooth (4) has a first tip (5) and a second tip (6) and the tip surface (7) has at least one elevation (9).
Provided is a substrate processing apparatus. The substrate processing apparatus includes a lower chamber having an opened upper side, an upper chamber opening or closing the upper side of the lower chamber, the upper chamber defining an inner space, in which a process is performed on a substrate, together with the lower chamber, a showerhead disposed on a lower portion of the upper chamber to supply a reaction gas toward the inner space, wherein a buffer space is defined between the showerhead and the upper chamber, a partition member disposed in the buffer space to partition the buffer space into a plurality of diffusion regions, and a plurality of gas supply ports disposed in the upper chamber to supply the reaction gas toward each of the diffusion regions.
Described herein are compositions and methods using same for forming a silicon-containing film such as, without limitation, a carbon doped silicon oxide film, a carbon doped silicon nitride, a carbon doped silicon oxynitride film in a deposition process. In one aspect, the composition comprises at least cyclic carbosilane having at least one Si—C—Si linkage and at least one anchoring group selected from a halide atom, an amino group, and combinations thereof.
Certain example embodiments relate to methods for low temperature direct graphene growth on glass, and/or associated articles/devices. In certain example embodiments, a glass substrate has a layer including Ni formed thereon. The layer including Ni has a stress pre-engineered through the implantation of He therein. It also may be preconditioned via annealing and/or the like. A remote plasma-assisted chemical vapor deposition technique is used to form graphene both above and below the Ni-inclusive film. The Ni-inclusive film and the top graphene may be removed via tape and/or the like, leaving graphene on the substrate. Optionally, a silicon-inclusive layer may be formed between the Ni-inclusive layer and the substrate. Products including such articles, and/or methods of making the same, also are contemplated.
A high strength cold rolled steel sheet with a low yield ratio has a chemical composition containing C: 0.05% to 0.10%, Si: 0.6% to 1.3%, Mn: 1.4% to 2.2%, P: 0.08% or less, S: 0.010% or less, Al: 0.01% to 0.08%, N: 0.010% or less, and the remainder being Fe and incidental impurities, on a percent by mass basis, and a microstructure in which the average grain size of ferrite is 15 μm or less, the volume fraction of ferrite is 70% or more, the volume fraction of bainite is 3% or more, the volume fraction of retained austenite is 4% to 7%, the average grain size of martensite is 5 μm or less, and the volume fraction of martensite is 1% to 6%, wherein the average C concentration (percent by mass) in the retained austenite is 0.30% to 0.70%, yield ratio is 64% or less, and the tensile strength is 590 MPa or more.
An amorphous alloy and a method for preparing the amorphous alloy are provided. The amorphous alloy is represented by a formula of (Zr,Hf)aMbNcBed. M contains at least one element selected from transition group elements. N contains at least one selected from Al and Ti. And 40≤a≤70, 10≤b≤40, 5≤c≤20, 5≤d≤25, and a+b+c+d=100. The ratio of an atomic percentage of Hf to an atomic percentage of Zr is in a range of about 0.01 to about 5.
A rotation-suspension smelting method, in which a powdered sulfide concentrate and an oxygen-containing gas are sprayed into a high-temperature reaction tower. The oxygen-containing gas is divided into two parts: the second oxygen-containing gas is sprayed in the form of an annular direct flow into the reaction tower and forms a bell-shaped wind curtain; and the first oxygen-containing gas is transformed into a rotation-jet and jetted into the center of the wind curtain. In the space between the gas flows, the concentrate entering in a direction deviated towards the center is drawn in the rotation-jet, and a high-temperature off-gas is sucked in, forming a gas-particle mixed two-phase rotation-jet. The sulfide concentrate is ignited, at the same time, a melt containing matte (or metal) and slag is formed; and the matte (or metal) is separated from the slag at the bottom of the reaction tower, completing the metallurgical process.
A steel sheet exhibiting good drawability and excellent buckling strength of a can body portion against an external pressure, and a method for manufacturing the same. The steel sheet includes C: 0.0030% or more and 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.0% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.050% or less, and incidental impurities. Contents of C and Nb satisfy 0.10≤([Nb]/92.9)/([C]/12)<0.60, the HR30T hardness of the steel sheet is 56 or more, and the average Young's modulus of the steel sheet is 210 GPa or more.
A roughly shaped material for a rolling bearing of the present invention is produced by forging a steel composed of a high-carbon chrome bearing steel containing 0.7 mass % to 1.2 mass % of a carbon, and 0.8 mass % to 1.8 mass % of a chromium to a predetermined shape while heating the steel to a forging temperature in a range of (Ae1 point+25° C.) to (Ae1 point+105° C.), cooling a forged article to a temperature of Ae1 point or lower, and performing an annealing in which the forged article that is obtained is heated to a soaking temperature in a range of (Ae1 point+25° C.) to (Ae1 point+85° C.), the forged article is retained for 0.5 hours or longer, and the forged article is cooled down to 700° C. or lower at a cooling rate of 0.30° C./s or slower.
Probiotic Bifidobacterium strain AH1714 is significantly immunomodulatory following oral consumption. The strain is useful as an immunomodulatory biotherapeutic agent.
A method of determining whether a given single nucleotide is methylated or not methylated characterized by the steps of (a) contacting the single nucleotide with one or more hybridization probe types each of which in its unused form; (b) for the relevant probe type causing (i) the single nucleotide to bind to the region resistant to exonucleolytic degradation and the single-stranded region and (ii) the second oligonucleotide to bind to the single nucleotide and the single-stranded nucleotide region; (c) treating the used probe with a methylation-dependent restriction or a methylation-sensitive restriction endonuclease to cleave adjacent the region resistant to exonucleolytic degradation; and thereafter (d) treating the product of step (c) with an exonuclease or a polymerase exhibiting exonuclease activity to liberate either only first or both first and second detectable elements in a detectable state to determine if the single nucleotide is methylated or not.
This invention provides for compositions for use in real time nucleic acid detection processes. Such real time nucleic acid detection processes are carried out with energy transfer elements attached to nucleic acid primers, nucleotides, nucleic acid probes or nucleic acid binding agents. Real time nucleic acid detection allows for the qualitative or quantitative detection or determination of single-stranded or double-stranded nucleic acids of interest in a sample. Other processes are provided by this invention including processes for removing a portion of a homopolymeric sequence, e.g., poly A sequence or tail, from an analyte or library of analytes. Compositions useful in carrying out such removal processes are also described and provided. Paneling and multiplex analyses of more than one nucleic acid analyte using one sample are also provided.
Methods for preserving and processing cell-free nucleic acids are disclosed. The method includes a blood collection tube including a composition formulated for stabilizing cell-free nucleic acids within a blood sample. The composition includes least one formaldehyde releaser preservative agent; ethylenediaminetetraacetic acid (EDTA); and one or more solvents; and at least some formaldehyde and up to about 1% formaldehyde as a result of the at least one formaldehyde releaser preservative agent. The collected blood sample is storable for at least, or about 7 days without cell lysis and without cell-free nucleic acid degradation of the blood sample due to DNase and RNase activity after blood draw. The method may include isolating the cell free nucleic acids from the stabilized blood sample and testing the isolated cell free nucleic acids from the stabilized blood sample to identify the presence, absence or severity of a disease state.
The invention provides methods, compositions, kits and devices for the detection of target molecules. In some embodiments, the invention allows for multiplexed target molecule detection.
The invention relates to the detection of specified, flagellated bacteria, particularly Salmonella, in food and stool. A single culturing period of about 12 to 24 hours in a liquid nutrient medium without agitation is combined with a position-selective sampling of the flagellated microbes from the liquid of the culture, after which a mass spectrometric detection method is used which recognizes the target bacteria in mixtures. A second culture step is only necessary in exceptional cases. A species-selective or genus-selective culture medium is advantageous. Positional selection becomes possible because these bacteria use their flagella to counteract sedimentation by chemotaxis, and they collect near the surface. This provides a low-cost detection method that is several days faster than conventional methods
The present invention provides engineered phenylalanine ammonia-lyase (PAL) polypeptides and compositions thereof, as well as polynucleotides encoding the engineered phenylalanine ammonia-lyase (PAL) polypeptides.
The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
A polymer film for packaging at least one microorganism culture medium includes at least one layer of polystyrene and at least one heat-sealing layer. The polymer film has an average water vapor permeability of between 30.0 g/m2×24 hours and 140.0 g/m2×24 hours, preferentially between 70.0 g/m2×24 hours and 120.0 g/m2×24 hours.
A method for producing a high viscosity, low volatiles blown stripped oil blend is provided. The method may include the steps of: (i) obtaining an oil blend of corn stillage oil and soybean oil having a weight ratio of corn stillage oil to soybean oil of from about 1:2 to 3:1; (ii) heating the oil blend to at least 90° C.; (iii) passing air through the heated oil blend to produce a blown oil having a viscosity of at least 50 cSt at 40° C.; and (iv) stripping the blown oil from step (iii) to reduce an acid value of the blown oil to less than 5.0 mg KOH/gram.
A viscosity index improver including a comb-shaped polymer is provided. For a solution having the viscosity index improver dissolved in a mineral oil and having a solid component concentration of 25 mass %, a ratio of the storage modulus (G′) to the loss modulus (G″) of the solution measured at a measuring temperature of 70° C. is 0.40 or more. For a solution (α) at 25° C. having the viscosity index improver dissolved in a mineral oil and having a solid component concentration of 25 mass % and a solution (β) resulting from subjecting the solution (α) to heating to 100° C. at a prescribed temperature rise rate and then cooling to 25° C. at a prescribed cooling rate, a ratio of the storage modulus (G′) of the solution (β) to the storage modulus (G′) of the solution (α) measured at a measuring temperature of 25° C. is 2.0 or more.
The present invention describes a composition characterized in that the composition comprises a first metal component and particles including a second metal component. Furthermore the present invention describes a lubricant additive composition, a lubricant composition and a grease composition comprising the present composition.
The installation of prefabricated drains in a horizontal, generally co-planar pattern below the surface of the CCR with suction or a vacuum to withdraw water from the CCR material to lower the water level down to the level of the prefabricated drains below the CCR surface. Dewatering may be coupled with imparting vibrations to the material to further promote both additional dewatering and compaction of the CCR material in the pond. A suitably graded bottom ash, fly ash, sand or large-diameter-solid particle layer may be added on top of the horizontal drains to enhance dewatering of finer CCR material.
A method and apparatus for converting an alcohol into a fuel mixture which consists of alcohol, ether and water and is suitable for operating a combustion engine, in particular an internal combustion engine in a motor vehicle, converts the alcohol into the fuel mixture in a reactor at a suitable reaction temperature. The mixing ratio of alcohol fraction, ether fraction and water fraction in the fuel mixture is adjusted by controlling at least one reaction parameter of a reaction taking place in the reactor.
The present invention relates to a process and an apparatus for purifying tall oil material for the production of biofuels and components thereof. The present invention relates further to hydroprocessing of the purified material to obtain biofuels and components thereof.
A churning and stoking ram for a furnace is disclosed. The churning and stoking ram includes a frame disposed externally of the furnace, where the stoking ram is mounted on the frame. The stoking ram is positionable relative to the furnace between an external position and an internal position, and is rotatable about a central longitudinal axis of the stoking ram. The stoking ram further includes a churning device positionable relative to the stoking ram between a retracted position and an extended position, a first actuator mounted on the frame to position the stoking ram between the external and internal positions, a second actuator to position the churning device between the retracted and extended positions, and a third actuator to rotate the stoking ram and the churning device associated therewith.
A method of preparing a drag-reducing composition that includes a dispersion polymer includes steps for preparing the dispersion polymer, steps for incorporating the dispersion polymer into a drag-reducing composition, and steps for using the drag-reducing composition. The step of preparing a dispersion polymer includes preparing an aqueous mixture by adding a water-soluble salt and at least one polymeric dispersant to water and polymerizing one or more water-soluble monomers in the aqueous mixture. Once the dispersion polymer has been combined with the drag-reducing additive, the combination is injected into a subterranean formation, a pipeline or a gathering line.
A working fluid for heat cycle contains trifluoroethylene and 2,3,3,3-tetrafluoropropene. The proportion of the total amount of trifluoroethylene and 2,3,3,3-tetrafluoropropene based on the entire amount of the working fluid is higher than 90 mass % and at most 100 mass %. The proportion of trifluoroethylene based on the total amount of trifluoroethylene and 2,3,3,3-tetrafluoropropene is at least 21 mass % and at most 39 mass %. The working fluid has a low global warming potential and suppressed self-decomposition property. A composition for a heat cycle system contains the working fluid and a heat cycle system employs the composition.
A transparent solid glue, in mass percentage comprises: 10.0%-50.0% of glycerol, 5.0%-20.0% of propylene glycol, 5.0%-30.0% of sticky substance, 1.0%-10.0% of stearic acid, 0-5.0% of vegetable oil, 0.5%-5.0% of protopine, 0.1%-5.0 of excipient, 0.1%-0.5% of preservative, and 5.0%-70.0% of deionized water, wherein the excipient is C12-16 saturated or unsaturated fatty acid salt. The prepared transparent solid glue has high initial viscosity; and the drying time is controllable so that the gluing position of the objects to be glued can be adjusted according to actual requirements, which is convenient to use, and the glue exhibits strong adhesion after completely drying. Meanwhile, the addition of protopine causes the pH of the solid glue to be between 10.49-10.99, and accordingly the solid glue is an environmentally friendly solid glue. Within a temperature range from −5° C. to 40° C., this solid glue is widely applicable to gluing paper, wood pieces, photographic paper, paperboards and etc.
The present invention relates to a cyanoacrylate composition having a heterogeneous curing initiator which is a hydrated calcium silicate. The composition is suitable for repairing and filling depressions, cracks, or holes in a substrate or between substrates to be bonded. It also relates to an adhesive comprising said composition, to a syringe containing it, to a method for bonding substrates, to the use of said composition, and to the use of said hydrated calcium silicate as curing agent for cyanoacrylate compositions.
A polishing composition contains a nitrogen-containing compound and abrasive grains, and the pH of the composition is in the range of 1 to 7. The nitrogen-containing compound in the polishing composition preferably has a structure expressed by a formula: R1—N(—R2)—R3 in which R1, R2, and R3 each represent an alkyl group with or without a characteristic group, two of R1 to R3 may form a part of a heterocycle, and two of R1 to R3 may be identical and form a part of a heterocycle with the remaining one. Alternatively, the nitrogen-containing compound is preferably selected from a group consisting of a carboxybetaine type ampholytic surfactant, a sulfobetaine type ampholytic surfactant, an imidazoline type ampholytic surfactant, and an amine oxide type ampholytic surfactant. A polishing composition may contain a water-soluble polymer and abrasive grains, and the pH of the composition is in the range of 1 to 8.
An automotive refinish coating mixer system includes (a) one or both of (i) at least one pellet of a compressed mixture of metal pigment and a powdered, water-soluble polymer and (ii) at least one pre-measured portion of metal flake pigment sealed in water-soluble polymer film; (b) a plurality of aqueous pigmented and unpigmented bases; and (c) a reducer base.
A coating composition comprising an oxidized α-olefin having 16 to 40 carbon atoms and one or more carboxylic acid or ester groups; a hydrocarbon-soluble ester-containing polymer having at least one branch of 10 to 36 carbon atoms and having a number average molecular weight of 5000 to 300,000; a carboxylic acid of at least 10 carbon atoms; a salt of an alkylarylsulfonic acid; an oil in an amount sufficient to dissolve said metal salt; and optionally, a volatile diluent, provides good rust protection.
A polycarbonate resin composition includes: a polycarbonate resin; a polyalkylene glycol compound; and an organic-inorganic hybrid pigment, and has a yellow index (YI) of about −2 to about 4 after irradiation with gamma rays, as measured in accordance with ASTM D1925 after irradiating an about 3 mm thick specimen with gamma rays at about 25 kGy and leaving the specimen for 7 days. The polycarbonate resin composition can exhibit excellent properties in terms of color and impact resistance after being irradiated with ionizing radiation.
The present invention relates to active and intelligent additives having hybrid characteristics, that are compatible with polymers, are thermally and mechanically stable, are capable of releasing electrons and/or photons in the presence of chemical compounds, specifically amino compounds, amide compounds, oxygen reducing compounds, water or vapors thereof. The active and intelligent additives incorporate themselves into polymer matrices allowing the obtainment of active and intelligent polymeric articles. These active and intelligent polymeric articles may act as inhibitors of growth of microorganisms and fungi, as well as indicators of the presence of gasses, either in the atmosphere or caused by the decomposition of foodstuffs, for example.
A water soluble film useful in unit-dose chemical packaging is disclosed. The film may include: a water soluble saccharide and a polyvinyl alcohol copolymer consisting essentially of: (a) from 80 to 99 mole percent of vinyl alcohol and vinyl ester monomer; and (b) from 1 to 20 mole percent of a pyrrolidone comonomer. Such compositions may be used to provide a water-soluble film simultaneously satisfying requirements in regard to water solubility, biodegradability, and physical properties, even when used for packaging of harsh, oxidizing chemicals.
Provided are polyaniline coordinated with a transition metal, a core-shell nanoparticle including the same as a core, and preparation methods thereof. According to the polyaniline coordinated with a transition metal and the nanoparticle of the present application, it is possible to prepare polyaniline coordinated with a transition metal using an oxidizing agent having a core-shell structure and including the transition metal and a nanoparticle including the same as a core. The polyaniline prepared as such is in a doped state, and, thus, a preparation process is simple. Further, dispersibility with respect to a solvent is improved, and a band gap level of the polyaniline can be easily regulated.
Described herein are heterocyclic organic compounds. More specifically, described herein are compounds based on the combination of fused pyrrole structures with diketopyrrolopyrrole structures, methods for making these compounds, and uses thereof. The compounds disclosed have improved electronic, polymerization and stability properties that allow for improved material processibility and inclusion in organic semiconductor devices.
A one-component curable resin composition that does not contain an isocyanate compound, comprised of uniformly blended (A) a compound having two or more epoxy groups within a molecule, (B) a compound having two or more thiol groups within a molecule, and (C) an imidazole compound of formula (I), wherein the component (C) exists in the form of liquid.
Disclosed are methods for designing a polyisocyanurate foam-forming composition with good low temperature insulation performance. The methods include: (a) measuring the LTTR of a first polyisocyanurate faced foam laminate prepared from a first polyisocyanurate foam-forming composition comprising a blowing agent composition, wherein the LTTR is measured at a plurality of temperatures to identify a calculated inflection point temperature below which defines a first mathematical correlation between temperature and the LTTR of the first polyisocyanurate faced foam laminate and above which defines a second mathematical correlation between temperature and the LTTR of the first polyisocyanurate faced foam laminate; (b) identifying a plurality of predicted mathematical correlations between temperature and the LTTR of the first polyisocyanurate faced foam laminate at a plurality of reduced inflection point temperatures below the calculated inflection point temperature; and (c) using the plurality of predicted mathematical correlations identified in step (b) to design a second polyisocyanurate foam-forming composition that comprises a blowing agent composition and produces a second polyisocyanurate faced foam laminate that has a LTTR satisfying a threshold value at all mean insulation temperatures within a temperature range of 10° F. to 75° F. (−12.2° C. to 23.9° C.).
The presently disclosed and claimed inventive concept(s) relates to solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound having at least one ester group and at least one alkoxy group, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. The presently disclosed and claimed inventive concept(s) further relates to methods of making the catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
The present invention relates to a polyethylene homo- or copolymer having improved wear properties. In particular, the invention relates to an ultra-high molecular weight polyethylene having improved wear properties prepared using a heterogeneous Ziegler catalyst system. Said polyethylene homo- or copolymer is characterized in that the abrasion index of said polyethylene is related to the elongational stress according to the formula (I): in which ES=elongational stress as measured according to ISO 11542-2:1998 AI=abrasion index, as measured according to ISO 15527:2010 where the reference material according to ISO 15527:2010 is set to 100; β<1.8; and −0.015
A substrate comprising a crosslinked polymer primer layer, and grafted thereto a ligand-functionalized polymer is provided. The grafted polymer has the requisite affinity for binding neutral or negatively charged biomaterials, such as cells, cell debris, bacteria, spores, viruses, nucleic acids, and proteins, at pH's near or below the pI's of the biomaterials.
The sulfated oxysterol 5-cholesten-3β, 25-diol 3-sulphate, a nuclear cholesterol metabolite that decreases lipid biosynthesis and increases cholesterol secretion and degradation, is provided as an agent to lower intracellular and serum cholesterol and/or triglycerides, and to prevent or treat lipid accumulation-associated inflammation and conditions associated with such inflammation. Methods which involve the use of this sulfated oxysterol to treat conditions associated with high cholesterol and/or high triglycerides and/or inflammation (e.g. hypercholesterolemia, hypertriglyceridemia, non-alcoholic fatty liver diseases, atherosclerosis, etc.) are also provided.
N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, N2-phosphinyl amidinate metal salt complexes are described. Methods for making N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl amidine metal salt complexes and N2-phosphinyl amidinate metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
Described herein are perfluoroalkylated zinc compounds having the structure of Formula (I) or Formula (II), which can be used to perfluoroalkylate organic, inorganic and organometallic substrates. Methods of making and using these compounds by reacting zinc or a dialkylzinc compound with a perfluoroalkyl dihalide in a solvent such as tetrahydrofuran, dioxane or diglyme, are also described.
A compound having the following formula: which can also be embedded into a conjugated oligomeric of polymeric backbone, is proposed for optical and electro optical applications.
The present disclosure provides a compound of formula (I) and the use thereof for the therapeutic treatment of human cancers including B-cell lymphoma and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis.
The invention relates to a continuous or repetitive batch process for the hydrogenation of levulinic acid (LA) or esters thereof to at least gamma valerolactone (GVL) in a reactor comprising a feed stream and an outlet stream, in the presence of a solid Ru catalyst, said process comprising (a) pretreating said solid Ru catalyst with a reductant; and (b) reacting levulinic acid with hydrogen and the pretreated solid Ru catalyst obtained in step (a) at a temperature and residence time suitable to form at least GVL, characterized in that the pretreatment is in the presence of a first solvent which comprises water. This process is stable and little or no Ru will leak form the support.
Provided are novel compounds of Formula (I): pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, which are liver X receptor modulators, and which are useful in the treatment of diseases and disorders associated with the liver X receptor. Also provided are the compounds of Formula (I) and pharmaceutical compositions thereof for treating atherosclerosis, cardiovascular disease, Alzheimer's disease, dermatitis, dyslipidemia, cancer and other diseases or disorders.
Long-term and high-density energy sources are described that utilize radioisotope batteries that provide a tritium (3H)-based direct energy conversion system. The beta radiation source is a nitroxide compound with a synthetic yield near 100%. The nitroxide compound can be molded into flexible films to cover multiple structures, and has a specific activity and gravimetric density (wt % 3H) comparable to that of tritiated hydrides. A carrier system based on such tritiated nitroxides can be scaled up without significant beta self-absorption, permitting the energy source to have higher specific volume power densities than current radioisotope batteries. Such a carrier can be applied directly to a semiconductor array (such as an integrated circuit) in order to provide electrical power or, alternatively, be prepared with a phosphor and applied to a photovoltaic cell.
The present invention is able to provide a bifunctional compound represented by formula (1). (In the formula, R1 represents COOCH3, COOC2H5, COOC3H7, COOC4H9 or CHO; and R2 represents H, CH3 or C2H5.)
A methanol/MMA azeotrope is broken or avoided by a method comprising the steps of (1) raising the pressure within a first vessel, e.g., a distillation column, that contains a methanol/MMA azeotrope, (2) collecting the azeotrope as a liquid, and then in a second, separate vessel, e.g., another distillation column, (3) raising the pressure sufficiently to allow for the breaking of or avoidance of the azeotrope and the recovery of the methanol.
A process for the oxidative dehydrogenation of n-butenes to butadiene is disclosed herein, in which the formation of butadiene peroxides from butadiene in the work-up of the product gas mixture from the oxidative dehydrogenation is effectively prevented.
Disclosed is a process for producing light olefins. In the process for producing light olefins by continuously bringing an alkane feedstock and a catalyst into contact to subject to a dehydrogenation reaction, the reaction pressure P of the dehydrogenation reaction is made 0.6-2 MPa and the volume space velocity H of the dehydrogenation reaction is made 500-1000 h−1. The light olefins production process of the present invention is simple and continuous in operation and has the characteristics of low investment, significant increase in yield of light olefins and high safety.
A method of generating electricity which comprises forming a galvanic cell comprising two electrodes in contact with an ionic conductor, wherein the ionic conductor comprises an explosive composition or is derived from an explosive composition.
The invention chiefly concerns a method for preparing polyalkoxylated polycarboxylates in which the following are caused to react in the presence of water and a catalyst at a temperature of between 120 and 250° C.: at least one polycarboxylic acid obtained by polymerization of at least one unsaturated carboxylic acid; and at least one polyether carrying a free hydroxyl group capable of reacting with a carboxylic function of the said polycarboxylic acid, characterized in that the catalyst is an alkaline or alkaline-earth salt of a strong protic acid.
Methods and apparatus for cutting a glass sheet along a cutting line into a desired shape. A laser source is configured to apply a laser beam to a beam location on the cutting line of the glass sheet. A source of cooling fluid is configured to apply a cooling fluid to a cooling band on the glass sheet to reduce a temperature of the glass sheet along the cooling path while elevating the temperature of the glass sheet at the beam location with the laser beam. The source of cooling fluid is configured to apply the cooling path as a cooling ring to circumscribe the beam location on the cutting line with the cooling band circumferentially spaced from the beam location while the cooling path and the beam location move simultaneously together in order to propagate a fracture in the glass sheet along the cutting line.
Disclosed are system and method for filtration capable of minimizing the energy consumption. The filtration system of the invention comprises a processing tank, a first pump for supplying a feed water to be treated to the processing tank, a filtering apparatus in the processing tank, and a second pump for providing the filtering apparatus with a negative pressure so that the filtering apparatus can treat the feed water to produce a permeate, wherein the processing tank is sealable so that the feed water in the processing tank can be pressurized by the first pump after the processing tank is filled with the feed water.
A fluid magnetizer is provided, including: a housing; a magnetizing member, received in the housing; a resonance member, cooperating with the magnetizing member to resonate, received in the housing, the resonance member, the magnetizing member and the housing defining a channel flowing past the resonance member and the magnetizing member.
A method for purifying solid borazane (NH3BH3 (s)) includes a) bringing solid borazane (NH3BH3 (s)) containing impurities into contact with a stream of gaseous ammonia (NH3 (g)) to obtain, by selective liquefaction of the borazane, a liquid phase containing liquefied borazane and ammonia and a solid phase constituted of at least a part of the impurities, b) separating the liquid and solid phases for recovery of the liquid phase, on the one hand, and of the solid phase, on the other hand; c) removing the ammonia from the recovered liquid phase, this removal causing precipitation of the purified borazane (NH3BH3 (s′)); and d) recovering the purified precipitated borazane (NH3BH3 (s′)).
Described herein are methods for the bromine-facilitated synthesis of fluoro-sulfur compounds, that include SF4, SF5Cl, SF5Br and SF6. The methods described herein generally require lower temperature and pressure, produce higher yields, require less time, do not use corrosive or costly reactants and solvents that are commonly used in the synthesis of the fluoro-sulfur compounds, and do not produce deleterious waste products when compared to previously-used methods.
Liquid container nozzles including a valve handle, valve body, spool, and spout assembly, where the valve body may move slidingly into the valve handle over the spool to control the flow of liquid through the nozzle. Liquid flow may be controlled by adjusting the position of the valve body in relation to the valve handle and spool using varying force or pressure. The spool may include one or more holes to control the flow of liquid. In some examples of the invention, the spool may narrow in an S-shaped fashion, and the holes of the spool may be located on a portion of the spool that narrows to form S-shaped holes. These holes may swirl liquid as it is poured from the nozzle to create a more uniform flow.
A device for protecting a liquid from oxidation inside a container includes a first element supplying the liquid inside the container, a second element supplying the liquid outside the container and a control unit. A pneumatic control system is configured to produce an overpressure inside the container and on the liquid when the liquid is supplied outside the container, such that, following a decrease in the volume of the liquid inside the container, the pneumatic control system increases its volume by an amount equal to the change in the volume of the liquid. The pneumatic control system includes a variable capacity tank and a pipe supplying and discharging a fluid for filling the tank. A system supplying and discharging the filling fluid is connected to the pipe and the supplying and discharging pipe communicates with the variable capacity tank through a connection placed inside the container at its lower end.
The present disclosure discloses a method and system for positioning an engineering machinery work object. The method comprises: a reference station collects in real time satellite positioning information as a reference station current measurement value D0, and transmits D0 to first and second mobile stations; the first mobile station and the second mobile station respectively collect in real time satellite positioning information as a first mobile station current measurement value D1 and a second mobile station current measurement value D2, and respectively perform dynamic differential processes on D0 and D1 and D0 and D2 to obtain relative coordinate information of the first mobile station and the second mobile station; a crane resolving unit determines the boom extension length, the boom pitch angle and boom rotating angle based on the relative coordinate information of the first mobile station and the second mobile station; based on the boom extension length, the boom pitch angle and the boom rotating angle, a crane controller controls the boom to move to a hoisting position of the object to hoist the object. The present disclosure can greatly increase the precision of positioning the work object, and can also automatically track the boom to avoid errors and risks resulting from visual adjustment.
An attachment that incorporates a vacuum mechanism along with one or more grab arm assemblies. The vacuum mechanism and each grab arm assembly are configured to hold an object at the same time. In other embodiments, the object can be held solely by the vacuum mechanism or solely by the grab arms. In case of failure of the vacuum mechanism, for example a loss of suction or vacuum power or the vacuum is not properly centered on the object, the grab arm assembly acts as a back-up lifting mechanism to hold the object so that the object is not dropped. In addition, the grab arm assembly permits the attachment to hold the object in orientations, such as vertical, that are not possible using the vacuum mechanism by itself.
A lifter with electro-permanent magnets is provided. It has an external bearing structure closed at the bottom by a plate, provided with a heat shield, and pole pieces secured under the respective poles and protruding from the bottom plate. Each of the electro-permanent magnets has a reversible magnet arranged on top of one of the poles, of a fixed polarization magnet formed by a plurality of blocks placed along the lateral faces of the pole and of a coil arranged around the reversible magnet to cause the reversal of the polarization of the latter by means of an electrical pulse. An airtight air gap between 1 and 4 mm high is formed between each pole piece and the respective pole through the interposition of a plate of thermal insulation material that resists high temperatures provided at each pole with a rectangular window slightly smaller in size than the pole itself, with the top sides of the pole pieces and/or the bottom sides of the poles being provided with peripheral recesses suitable to act as seats for the positioning of the plate.
A transportation system for a building includes a horizontal travel lane, a vertical travel lane, and a transportation cab configured for travel along the horizontal travel lane and vertical travel lane, a cab floor of the transportation cab orientable such that the cab floor is non perpendicular to a gravitational force acting on the transportation cab. A method of operating a transportation system for a building includes locating a transportation cab at a travel lane positioned at a building, accelerating the transportation cab in a non-vertical direction along the travel lane and orienting a cab floor of the transportation cab to be non-perpendicular to a gravitational force acting on the transportation cab during non-vertical acceleration of the transportation cab.
Embodiments are directed to a converter configured to supply power to a motor of an elevator, a first power source coupled to the converter and configured to provide input power to the converter, and a second power source selectively coupled to the converter and configured to provide input power to the converter when power from the first power source is unavailable and when an elevator car of the elevator is moving, wherein a speed of the elevator car remains substantially constant when a transition in terms of the input power to the converter is made from the first power source to the second power source.
The present invention is a system for spooling flexible cord, having a spooler body with a central attachment cavity, an arbor connected to said spooler body, a plurality of projections emanating outward from a surface of said arbor, whereby said system is constructed and arranged to rotate and spool said cord.
A sheet binding method according to an embodiment includes holding a sheet bundle in a state where multiple sheets forming the sheet bundle are shifted relative to each other at an edge portion of the sheet bundle. A pressing region of the edge portion is pressed, in a sheet bundle thickness direction, so that there is substantially no slack along the edge portion. While the sheet bundle is pressed, tape is applied to an edge portion of a sheet bundle at a tape attachment region of the edge portion different from the pressing region.
During the operation of a delivery device, having a first and a second stack delivery, in a transport direction, in which a first braking device is provided in the transport path of sheets which are conveyed by a conveyor system along a transport path in the entry region of the first stack delivery, and in which a second braking device is provided in the input area of the second stack delivery, the sheets to be printed, which come into the first braking device come in a form- or friction-locking operative contact with an active surface of a holding means comprised by the braking device. The active surface coming into this operative contact with the sheet to be printed is moved forcibly by a drive in the transport direction. In a first operating mode, during a form- or friction-fit interaction between the sheet and the active surface, a speed for the movement of the active surface is reduced from a first speed to a comparatively lower stacking speed. The first braking device is operated in a second operating mode for a subsequently incoming sheet that is to be deposited on a stack of the second stack delivery. The active surface is moved, for at least the entire duration of the existing form- or friction-fit operating contact, with a speed between the respect sheet and the active surface. That speed corresponds approximately, i.e. with a deviation of ±10%, to the conveying speed of the conveyor system.
A medium transportation device includes a transportation driving roller that transports a medium; a roller unit including a separation roller as a driven roller that is rotated by rotation of the transportation driving roller and a shaft which penetrates a rotation center of the separation roller; a holder that detachably holds the roller unit; and a lock mechanism that switches between an unlocked state in which the roller unit is unlocked from the holder and a locked state in which the roller unit is locked to the holder.
A pipeline transportation method of coal is provided. The coal is pulverized and then subjected to a waterproofing treatment, so that a time needed for precipitating the pulverized coal in water is longer than a time needed for transporting the pulverized coal by flowing water to a destination. The waterproof pulverized coal is transported by water through a pipeline. After reaching the destination, the waterproof pulverized coal can be separated from the water in a static pool, collected by a cyclone separator, and then stored in a warehouse.
An arrangement for transporting powder comprises a hopper. The hopper is arranged on a stand and it has an inlet for receiving powder as well as an outlet for dispensing powder. A vibrator is attached to the hopper and the hopper is suspended to the stand via spring means.
A cap for a container, wherein the cap is adapted to be positioned across the mouth of a container, the cap comprising: an upper portion that lies across the mouth of a container; a sealed compartment for storing contents to be added to the container interior, the compartment being located below the upper portion, and defined by a lower membrane and a wall extending between the upper portion and the lower membrane, wherein the lower membrane is rupturable; and a piercer in the sealed compartment that is actuable through the upper portion to pierce the lower membrane, wherein the piercer is configured to form a passage therethrough to open the compartment to the container interior.
A clip cap assembly for securing an aerosol canister, including a cap having a top, a lateral side connected to the top and having a radially inward facing surface arranged to engage the aerosol canister, an opening, and a first flange extending downwardly from the top and forming a first surface in the opening, and a clip, including an arm having a first end and a second end, and a plug extending from the second end and engaged in the opening, the plug having a second surface arranged proximate the first surface, and a prong including a top surface, a bottom surface, and an end surface.
A closure assembly for a bottle including a cage, a closure cap, and a sealing nut. The cage includes a side wall with an inner surface including a first annular relief and a second annular relief spaced so as to form a seat for a collar of the bottle. The closure cap includes a head and a shank. The sealing nut includes a side wall. The inner surface of the side wall of the cage includes one or more retaining teeth for retaining the head of the closure cap. The retaining teeth are cantilevered and inclined with respect to the inner surface of the side wall of the cage. Opposite the retaining teeth a recess is provided within which the teeth can be retracted, so that the head of the sealing cap can be pushed towards the base of the cage.
An integrated cork opener that is integrated into a cork. The cork comprising a body configured in size and in shape to seal a container. The cork further comprises a body pulling apparatus, which includes an anchor and a foldable handle, said body pulling apparatus is integrated into said body. In some exemplary embodiments, a container, such as a wine bottle, may be sealed using a cork comprising an integrated body pulling apparatus.
A vacuum adapter device is useful for connecting a suction generating device to a garment bag. The device includes at least one conical section. The conical section includes a wide opening configured be connected to one of the suction generating device and the garment bag and a narrow opening connected to a reinforcing feature configured to prevent the narrow opening from collapsing when suction is applied to the device. The conical section is constructed with a flexible polymer material.
A machine for making single use capsules (1) for extract or infusion beverages includes: a transport element (8) for transporting rigid containers (2) and being closed in a loop around movement apparatus (9); a feeding station (11) for feeding the rigid containers (2) into respective pockets (10) of the transport element (8); a dosing station (12) for dosing the product into the rigid container (2); a closing station (13) for closing the rigid container (2) with a piece of sheet (7); an outfeed station (14). The closing station (13) includes a unit (500) for preparing and feeding single pieces of sealing sheet (7) correlated with the shape of the upper aperture (4) of the rigid container (2); transfer apparatus (17) by which individual pieces of sealing sheet (7) are withdrawn sequentially and continuously from the preparing and feeding unit (500) and by which the selfsame pieces (7) are transported and delivered to a sealing wheel (19) adapted to seal the piece of sealing sheet (7) to the rigid container (2).
A method of manufacturing aircraft parts includes creating corresponding 3D geometry models representing surface features and holes of the aircraft parts sized to nominal dimensions. The method includes sending the 3D geometry models to respective manufacturing facilities for each to generate a NC machining program directly from a 3D geometry model, with instructions for a single NC machining apparatus to machine an aircraft part, and including instructions to machine the surface features and/or holes to the modeled dimensions. And for each of the respective manufacturing facilities to machine the aircraft part utilizing the NC machining program. For this, the NC machining apparatus utilizes tool(s) set at substantially the modeled dimensions, instead of at a high or low side of related tolerance range(s) to allow for tight geometric dimensioning and tolerancing requirements. This method enables the full process capability of the CNC machines while utilizing inspection tolerances that are measurable.
A method and system providing an airflow to a wing anti-ice system includes receiving an airflow from an outside air supply, compressing the airflow via an electric compressor, controlling a temperature of the airflow from the electric air compressor via a heat exchanger in fluid communication with the electric compressor and the wing anti-ice system, and providing the airflow to the wing anti-ice system via the heat exchanger.
An aircraft component assembly has a structural body and a thermal management de-icing system for minimizing or preventing ice build-up on leading edges of the body. The system includes a supply line for flowing heated fluid to the leading edges and a cooling device that interposes the supply line to prevent overheating of the leading edges thus protecting bodies that may be made of composite materials that are more susceptible to heat.
The invention relates to a floor attachment assembly for mechanically connecting two aircraft seats to a floor structure of an aircraft, which assembly comprises four attachment points. The floor attachment assembly can be attached to the floor structure by means of one attachment element in each case at the four attachment points. The floor attachment assembly comprises two adapter plates, the two adapter plates being interconnected by means of a connection element. The mechanical connection between at least one of the adapter plates and at least one of the attachment elements is movable along at least one axis. Furthermore, the invention relates to a corresponding aircraft seat.
Components and systems of an aircraft seating assembly are disclosed. The aircraft seating assembly can include an adjustable headrest that allows the headrest to be translated and/or rotated relative to a seat, a storage sleeve, and/or a spreader. The aircraft seating assembly can include an energy absorption system. The energy absorption system can include bracket which can control pivoting of a seat back relative to the bracket when subject to forces exceeding a threshold force. The energy absorption system can include a movable wall coupled to the seat.
Described are arrangements of seats, which include at least one column having rows of pairs of seats (12A,12B), each seat having a chair position and a bed position. A pair of foot wells (34A,34B) are positioned within an aft side of each row and configured to vertically align with the pair of seats in a next-aft row when the pair of seats are positioned in the bed position. The bed position of a first seat (12A) of the pair of seats is vertically offset from the bed position of a second seat (12B) of the pair of seats so that the first seat has a high bed position and the second seat has a low bed position.
A system for controlling passenger services includes a sensor that generates a signal representative of the at least one of the position of the seat, the presence of passenger in the seat, the position of the at least one hand of the passenger, the configuration of the at least one hand of the passenger and the direction of movement of the at least one hand of the passenger. A first light source, an air supply, and a window shade are disposed at a predetermined locations with respect to the seat. A controller, connected to the sensor, generates a control signal that controls at least one parameter associated with at least one of light generated by the first light source, air supplied by the air supply and a degree of openness of the window shade.
An autopilot device and method for automatically piloting a rotary wing aircraft, having at least one propulsion propeller, the rotary wing including at least one rotor with blades, the device including a processor co-operating with at least one collective control system for controlling the collective pitch of the blades. The device includes engagement means connected to the processor for engaging an assisted mode of piloting for maintaining an angle of attack, the processor automatically controlling the collective pitch of the blades when the assisted mode of piloting for maintaining an angle of attack is engaged by controlling the collective control system to maintain an aerodynamic angle of attack (α) of the aircraft at a reference angle of attack (α*).
A drive system for rotating a wheel of an aircraft landing gear. The drive system has a drive pinion and a motor operable to rotate the drive pinion via a drive path. A rotary damper is provided in the drive path between the motor and the drive pinion. A driven gear is adapted to be attached to the wheel so as to be capable of rotating the wheel. The drive system has a drive configuration in which the drive pinion is capable of meshing with the driven gear to permit the motor to drive the driven gear via the drive path. One of the drive pinion and the driven gear comprises a roller gear having a series of rollers arranged to form a ring, each roller being rotatable about a roller axis, and the other of the drive pinion and the driven gear comprises a sprocket.
An aircraft includes a main wing (where the main wing is a fixed wing) and a main wing rotor that extends outward on a trailing edge side of the main wing. The aircraft also includes a truncated fuselage, a canard and a canard rotor that is attached to the canard. The aircraft flies at least some of the time using aerodynamic lift acting on the main wing and flies at least some of the time by airflow produced by the main wing rotor. The aircraft is able to fly in those manners because the main wing rotor and the canard rotor are both fixed rotors, each with an axis of rotation that is tilted downward from horizontal at an angle between 20° to 40°, inclusive.
Aerodynamic structures having lower surface spoilers are described herein. One disclosed example apparatus includes a first spoiler of an aerodynamic structure of an aircraft, where the first spoiler is to deflect away from a first side of the aerodynamic structure and a second spoiler on a second side of the aerodynamic structure opposite of the first side, where the second spoiler is to deflect away from the second side to reduce a load on at least one of the first spoiler or a flap of the aerodynamic structure.
An outboard motor includes an engine having an output portion. A lower gear mechanism drives a propeller disposed below the engine. A transmission includes an input shaft that transmits power from the output portion to the transmission. An output shaft transmits power from the transmission to the lower gear mechanism. A reverse idler shaft is parallel to an intermediate shaft. A forward clutch is disposed on one of the input and intermediate shafts and connects and disconnects power from the input shaft to the intermediate shaft. A reverse clutch is disposed on the intermediate shaft and connects and disconnects power transmission from the input shaft to the intermediate shaft. Power of the input shaft is transmitted to the output shaft via the forward clutch and the intermediate shaft and is transmitted to the output shaft via the reverse idler shaft, the reverse clutch, and the intermediate shaft.
A floating wind power generation device comprises: a main buoyant body which has buoyancy and a space portion provided in the center; an auxiliary buoyant body which has buoyancy and is connected to the main buoyant body by being inserted into the space portion of the main buoyant body; a plurality of wind power generators which are vertically provided on top of the auxiliary buoyant body and generate power; a location control means which is connected to the main buoyant body and controls the location of the main buoyant body; an oscillation inhibiting means which is connected to the main buoyant body and enables the main buoyant body to maintain an equilibrium state by absorbing the sea waves; and a dock connection unit which is connected to the main buoyant body and enables a ship to lie at anchor on the sea.
A snowmobile includes an engine including a crankshaft, a driving shaft rotatable together with the crankshaft, an endless track belt drivable by the driving shaft, and a vehicle body frame including a wall portion defining an engine room accommodating the engine and engine support portions and supporting the engine. At least a portion of the wall portion is made of a carbon fiber-reinforced plastic material and overlaps the engine as seen in a side view.
A vehicle body manufacturing apparatus includes upper jig frames having frame members that are paired with each other and are insertable into the inside of the vehicle body through respective left and right openings of the vehicle body, a coupling mechanism that freely couples and decouples the ends of the paired frame members, and a clamp mechanism that is supported on the upper jig frame and positions the vehicle body from the inside of the vehicle body.
A locomotion subassembly for a biped robot is disclosed. The locomotion subassembly includes several unique energy transfer mechanisms and arrangements for efficiently powering the motion of the robot.
A crawler vehicle drive system, in particular for a crawler vehicle configured to groom ski slopes, having: a drive wheel rotating about a first rotation axis; an idle wheel rotating about a second rotation axis parallel to the first rotation axis); and a track looped around the drive wheel and the idle wheel, and comprising a plurality of belts made of an elastomeric material and a plurality of metal grousers fixed to the belt; wherein at least one belt has at least one continuous toothed strip extending along the inner face of the belt and configured to mesh with the drive wheel.
A sprocket for a crawler undercarriage comprises a plurality of sprocket teeth for engagement with a crawler track, wherein the sprocket teeth are arranged in a plurality of similar circumferential segments along the sprocket, and wherein an odd number of circumferential segments is provided.
Provided is a vehicle hood that allows a reduction in thickness of an outer panel while providing stiffness of the outer panel. A vehicle hood includes an outer panel, an inner panel, and a plurality of adhesive components. The inner panel has a plurality of beads. Each bead has a support part that supports each adhesive component. The adhesive components are provided on the support parts so as to be intermittently aligned along a specific direction. A support-part interval between the support parts adjacent to each other in an intersecting direction is smaller than an adhesive-component interval between the adhesive components adjacent to each other on the support parts.
A vehicle body structure is configured in such a manner that a left center pillar is covered with a left pillar garnish and a left gusset is joined to the upper end of the left center pillar. The left center pillar is provided with a pillar bead protruding toward the outside of a vehicle compartment. The left gusset is provided with a gusset bead that protrudes toward the vehicle compartment along the pillar bead. The gusset bead and the pillar bead form a first closed cross-section. An engagement section that is insertable into a first opening of the first closed cross-section is provided at the upper end of the left pillar garnish.
A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
An all-attitude human-machine interaction vehicle is disclosed. The all-attitude human-machine interaction vehicle includes a vehicle body and two wheels coupled with the vehicle body. The vehicle body includes a support frame, a pedal disposed on the support frame, a first position sensor, and a controller. The first position sensor is configured to detect attitude information of a user standing on the pedal. The controller is configured to drive the wheels to rotate according to the attitude information. The all-attitude human-machine interaction vehicle can detect attitude information of a user standing on the pedal and drive the wheels to rotate according to the attitude information. Furthermore, sitting or even standing on one foot, the user can still manipulate the all-attitude human-machine interaction vehicle, which further adds to the fun in manipulation.
An electric power steering apparatus that calculates a current command value based on at least a steering torque and assist-controls a steering system by driving a motor based on the current command value, the apparatus having a function to detect a steering angle on a steering and includes a gain section having a gain characteristic that a gain changes corresponding to the steering angle, such that a new current command value is generated by multiplying the current command value with the gain outputted from the gain section corresponding to the steering angle, and the gain characteristic is a constant value “1.0” till a steering angle θ1 short of a rack end, gradually decreases till a steering angle θ2 (>θ1) exceeding the rack end and holds a constant value G (>0) in a region that the steering angle is equal to or more than the steering angle θ2.
When the control unit monitoring the dual clutch transmission detects input signals from the driver and/or the prime mover and transmission indicating that the free-wheeling mode should be exited, then the transmission is controlled to reconnect the prime mover and the driving wheels. According to the invention, a rapid reconnection of the prime mover to the driven wheels is achieved by engaging the second, normally open clutch unit. Prior to engagement, the control unit can select a suitable gear depending on the input signals from the driver and/or the prime mover. As none of the first set of gears connecting the first input shaft to the driving wheels in the first transmission mechanism is engaged, the first clutch unit can be disengaged during or after engagement of the second clutch unit.
A sensor arrangement structure includes a vehicle framework member having a hollow cross-section, a vicinity information detection sensor and a cover. The vicinity information detection sensor is attached to the vehicle framework member. At least a portion of the vicinity information detection sensor is disposed inside the hollow cross-section of the vehicle framework member. A detection portion that detects vicinity information of a vehicle is oriented toward a vehicle outer side of the vehicle framework member. The cover is disposed to oppose the detection portion and allows transmission of a detection carrier that is detected by the detection portion.
Embodiments of the present invention provide a system comprising: a first controller configured in each of a predetermined plurality of states to generate a torque request signal in order to cause a vehicle to operate in accordance with a target speed value, the system being configured, when the first controller is one of said plurality of states to generate a gear shift limit signal to cause a change in an engine speed at which a transmission controller is permitted to cause a gear downshift, the gear shift limit signal being generated in dependence on at least one traction indicator signal indicative of an amount of estimated traction between the vehicle and a driving surface.
An apparatus for controlling a vehicle includes a vehicle additional yaw moment calculator that calculates, based on a yaw rate of a vehicle, a vehicle additional yaw moment to be applied to the vehicle independently of a steering system, a slipping condition determiner that makes a determination as to a slipping condition of the vehicle, and an adjustment gain calculator that calculates an adjustment gain to adjust the vehicle additional yaw moment so as to reduce the vehicle additional yaw moment additional yaw moment when the vehicle is determined to be in the slipping condition, and increases the adjustment gain in accordance with a degree of a slip of the vehicle when the vehicle is determined to recover from the slipping condition.
An engine control device of a work machine controls an internal-combustion engine of the work machine including a swing body, an implement attached to the swing body, a hydraulic actuator that operates the implement, a hydraulic pump that operates the hydraulic actuator, and the internal-combustion engine that drives the hydraulic pump and of which a rotation speed is changed according to a load. The engine control device of the work machine includes: a determination unit configured to determine whether a condition not requiring work with the implement is established; and an engine control unit configured to enable control at relief time of determining a target rotation speed targeted by the internal-combustion engine based on horsepower sucked by the hydraulic pump of when a hydraulic oil ejected by the hydraulic pump is relieved when the condition is established, and disables the control at relief time when the condition is not established.
A vehicle includes a plurality of brake assemblies and a plurality of electronic brake system (EBS) controllers. The brake assemblies each include an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The EBS controllers are located remotely from one another. Each EBS controller has integrated therein an electronic actuator driver unit that includes an electronic power circuit configured to drive at least one of the electro-mechanical actuators. A first EBS controller is configured to drive a first group of electro-mechanical actuators, and a second EBS controller is configured to drive a second group of electro-mechanical actuators that exclude the electro-mechanical actuators of the first group.
A hydraulic pump assembly for a hydraulic vehicle brake system includes a drive motor, preferably an electric motor, and a piston pump. The hydraulic pump assembly has a worm gear, preferably a ball screw unit, which converts a rotating output movement of the drive motor into a translatory drive movement of the piston pump or the pump piston. A method is provided for manufacturing the hydraulic pump assembly. A vehicle brake system includes the hydraulic pump assembly.
In order to achieve a vehicle wheel (10) slip relative to a roadway (12) while braking the vehicle, said slip being as advantageous as possible, the rotational speed (w) of the wheel (10) can be actively reduced by an ABS by means of a braking intervention and passively allowed to accelerate again via the roadway (12) when the brake is released. The slip of the wheel (10) oscillates by an optimal slip value during the ABS regulating process. The aim of the invention is to improve an anti-lock braking system for a vehicle. In the method according to the invention, at least one wheel (10) of the vehicle is supplied with a braking torque (Mb) in order to temporarily reduce a travel speed (v) of the vehicle relative to a rolling surface (12), said braking torque acting against a rotating direction (14) of the wheel (10). Additionally, the wheel (10) is temporarily supplied with an acceleration torque (Ma) by means of an accelerating device of the vehicle during the reduction of the travel speed (v), said acceleration torque acting in the rotating direction (14).
A device for two-way detection of the approach of a portable apparatus for near-field hands-free access to a vehicle, said device including a communication antenna having a near-field communication frequency, the device including: a first passive inductive sensor oriented towards the outside of the vehicle, a second passive inductive sensor oriented towards the inside of the vehicle, the two sensors being arranged so as to face one another, separated by a ferrite, and receiving the electromagnetic field emitted by the communication antenna, and being capable of detecting the approach of the portable apparatus; a device for measuring a first voltage across the terminals of the first sensor and a device for measuring a second voltage across the terminals of the second sensor; a device for comparing the first voltage and the second voltage in order to detect the approach of the portable apparatus coming from outside or coming from inside the vehicle.
A seat includes a frame, a pyrotechnic actuator, a webbing guide, and a member. The pyrotechnic actuator includes a housing attached to the frame and a rod linearly movable relative to the housing from a retracted position to an extended position. The rod includes a slot. The webbing guide is attached to the rod. The member is supported by the frame and movable into the slot when the rod is in the extended position.
A system includes an airbag, a seat, a strap, and an inflatable webbing. The airbag is inflatable to an inflated position. The seat includes a seat back. The strap has a first end connected the airbag and a second end connected to the seat back. The inflatable webbing is fluidly connected to the airbag and releasably connectable to the seat back.
A truck bed guard is provided that includes an undulating protective panel having a plurality of longitudinally aligned bends that forms at least one groove and at least one protrusion configured to increase impact resistance. A first flange extends transversely from the top of the panel to provide a first attachment feature, and a second flange extends vertically down beneath the panel to provide a second attachment feature. The guard may be attached to a bed wall of a truck via the first attachment feature and the second attachment feature. A gap between the undulating protective panel and the bed wall is configured to prevent damage to the bed wall. The truck bed guard provides impact resistance to protect the bed wall from objects transported in the truck bed.
Provided is a curvature restricting member, allowing for a curvature of the wire harness in a predetermined allowable direction, and regulating the curvature of the wire harness in a regulating direction beyond a predetermined limit state or more, the curvature restricting member includes: a plurality of member pieces arranged along the wire harness; a flexible connecting portion connecting adjacent ones of the plurality of member pieces to each other, wherein the curvature is allowed in the allowable direction by adjacent ones among the plurality of member pieces at the curbed portions separating from each other on the side opposite to the connecting portion and the connection portion bending, and wherein the curvature is not allowed in the restricting direction beyond the limit state by adjacent ones among the plurality of member pieces at the curbed portion abutting against each other on the side opposite to the connecting portion.
An instrument panel includes a panel body in which an opening is provided to extend from a fitting part for the display device to a part located on a display rear side with respect to the fitting part, when a display front side is defined as a side toward which a display surface of the display device faces in the instrument panel in which the display device is fitted, the display rear side is defined as a side opposite to the display front side, and the fitting part is defined as a part in which the display device is fitted in the instrument panel; and a cover that is attached to the panel body and that covers, from an outside of the panel body, a part of the opening that is located on the display rear side with respect to the fitting part.
A jaw member (11) for a support assembly (10) for securing a bicycle (1) to a load carrier (2) for a vehicle (8), The jaw member (13, 14) comprises a frame work structure formed by at least one support element and at least one rib (31, 32, 35, 36), The frame work structure is specifically adapted to enable the jaw member to withstand a relative high amount of tensile stress while still being relatively light weight.
A warning unit and a correspondingly configured method warns a driver in a vehicle where there is an imminent danger. The warning unit includes a control unit for bringing about a driver message when imminent danger is detected in the surroundings of the vehicle and an actuator system for outputting the driver message. When imminent danger is detected in the surroundings of the vehicle, the control unit outputs a signal for bringing about a flow of air in the direction of the driver.
A vehicle lamp device and a light cut-off structure thereof are disclosed. The light cut-off structure includes a front cut-off edge, a rear cut-off edge, and a top surface. The front cut-off edge corresponds in position to the rear cut-off edge and the top surface is connected between the front and rear cut-off edges. A portion of the top surface is inclined along an inclination direction from the front cut-off edge toward the rear cut-off edge. The portion has a predetermined inclination angle relative to a horizontal plane or a lens optical axis. The predetermined inclination angle is greater than 0 degrees and less than 30 degrees. A lighting pattern with a cut-off line is formed when at least one emitted light is selectively shielded by the front cut-off edge. Therefore, the light concentration ratio can be significantly raised.
The cargo system secures at least one steel coil for transport on a flatbed carrier. Each coil sits on movable cargo supports coupled on top of a base with support beams. Support brackets couple the support beams to anchoring beams that are coupled to the flatbed carrier. Once a coil is loaded, arms with adjacent upper and lower segments connected by cross members pivot on arm mounts to make contact with the coil. The arms adjust by lengthening or shortening based on the size of the coil. Tethers pass through anchor brackets and over the coil to hold the coil to the base. The arms apply pressure to the coil based on the tension of tethers that extend from the ends of the arms and couple to tethering brackets coupled to the frame of the carrier.
A lashing pin for engaging a hole in member to facilitate lashing the member to a fixture or vehicle. The lashing pin combines a cam pin sleeve assembly having a flange and sleeve with an eccentric hole formed therethrough with a cam pin assembly having a cam pin passing through the eccentric hole and connecting a cam disk with an eccentrically mounted cam. Rotation of the cam disk with respect to the flange aligns and misaligned the cam with respect to the cam sleeve, thereby enabling insertion through the hole at first position, and retention of the cam against removal at a second position.
A seat back structure includes a seat back panel, a cushion member disposed on a seating surface side of the seat back panel, and an intermediate member inserted into a space between the panel and the cushion member. The panel is comprised of a metal plate member and formed with an embossed portion protruding at the seating surface side, and a bead portion protruding at an opposite side from the embossed portion at a position surrounding the embossed portion. The intermediate member has a lower specific gravity than the cushion member and a higher hardness than the cushion member. The intermediate member is formed with a contacting portion contacting the embossed portion and a concaved portion denting toward the cushion member at a position corresponding to the bead portion. A space is formed between the concaved portion and the panel, at a position adjacent to the contacting portion.
A dual motor power system for a pure electric vehicle and a control method thereof are disclosed, wherein within a range defined between upper and lower torque thresholds for the operations of one of the two motors under current vehicle speed, the torque of this motor is changed stepwise with a certain torque step; the required torque of the other motor is determined based on the torque distribution relation of the first and second motors; and the synchronized efficiency of the power system is determined based on the torques of the first and second motors so that the optimal synchronized efficiency of the power system is ergodically searched out, and the optimal working points of the two motors and the corresponding gear of the second motor are determined then.
A user interface apparatus for a vehicle including a touch screen; a gesture input unit configured to detect a gesture of a user; and a processor configured to in response to the gesture detected by the gesture input unit being applied from a driver seat of the vehicle, display a preset first screen on the touch screen corresponding to driver operations of the vehicle, and in response to the gesture detected by the gesture input unit being applied from a front passenger seat of the vehicle, display a preset third screen on the touch screen corresponding to passenger operations of the vehicle excluding vehicle driving operations.
A shift position switching device for shifting gears in association with a shift position. The device includes a shift mechanism switching between shift positions using a drive power of a motor, an encoder outputting pulse signals in sync with a rotation of the motor, and a controller rotating the motor to a target rotation position corresponding to an intended gear. The controller rotates the motor toward a dead-end on a first shift position side of the shift mechanism while observing a motor rotation speed or an acceleration of rotation of the motor based on the outputted pulse signals of the encoder. Also, the controller learns, as a reference position on the first shift position side, a first rotation position of the motor.
A removable panel system for easily and efficiently varying the configuration of a cabin on a vehicle. The removable panel system generally includes a vehicle having a cab defined by a frame. Different panels may be selectively and removably connected to the frame to form various different cab configurations to suit the different needs of different jobs or operators. A roof panel may be removably connected to the frame to form a roof of the cab. A rear window extension may extend from the roof panel to form the rear window of the cab. A door receiver panel and/or door panel may be removably connected to the frame to form one or more doors of the cab. A windshield panel may be removably connected to the frame to form a windshield for the cab. All panels are adapted to be easily and efficiently interchanged without undue effort from the operator.
An air-conditioning apparatus includes a heat exchange unit including a condenser that radiates heat of refrigerant discharged from a compressor, and an evaporator that expands the refrigerant flowing out of the condenser using an expanding device and then absorbs ambient heat into the evaporator, the condenser and the evaporator being connected to each other. According to operation mode, air to be supplied to a vehicle interior selectively exchanges heat with the condenser or the evaporator, or sequentially exchanges heat with the condenser and the evaporator. A subcooler that cools the refrigerant flowing out of the condenser before the refrigerant is expanded by the expanding device is provided. The subcooler is disposed at a position below the evaporator and to which condensed water flows down.
An automobile air vent register is described. The register uses a pair of rotating vent cover doors and an elongate opening in a configuration providing good airflow control within a limited space. Exemplary methods and structures for controlling and directing airflow are provided.
The invention provides an axle for wheels of a two-track motor vehicle. The axle has, on each vehicle side, a wheel carrier, a damper strut, a transverse link and a transverse leaf spring which controls the wheel at least partially laterally and/or in the vehicle longitudinal direction. The damper strut has a damper tube and a damper piston which can be moved in the damper tube along a damper longitudinal axis. The damper strut is attached by the damper tube to the wheel carrier. The transverse link is attached by a wheel-carrier-side end region to the wheel carrier. The transverse leaf spring extends substantially in the vehicle transverse direction and has at least one wheel-carrier-side end region. The transverse leaf spring is attached by the wheel-carrier-side end region thereof to the damper strut and is supported on the damper strut.
A wheel suspension for a vehicle axle, in particular a front axle, of a two-track vehicle, having a wheel carrier carrying a vehicle wheel, this carrier being linked via a link assembly to a vehicle body, which link assembly has at least two links that are linked to the wheel carrier at bearing points on the side of the wheel carrier and to the vehicle body at bearing points on the body side. In the event of a head-on collision, in particular with a small lateral overlap, the vehicle wheel can be shifted rearwards in the longitudinal direction of the vehicle, and specifically with a pivoting movement of the crash-facing first link and with deformation of the crash-remote second link.
A coupler lock device is used with a trailer coupler that has a handwheel mounted on a threaded member for securing a hitch ball in the coupler socket. The coupler lock device has a housing configured for covering the coupler socket and the handwheel. The housing includes an opening to allow the housing to be positioned over the coupler socket and handwheel. A closure panel is movable between an open position and a closed position. The housing includes an aperture configured so that when the housing covers the coupler with the handwheel tightened to properly secure the hitch ball within the coupler socket, the handwheel threaded member protrudes through the top aperture and provides a confirmation that the hitch ball is properly, secured for towing.
An air maintenance tire assembly includes a tire having a tire cavity bounded by first and second sidewalls extending to a tire tread region and air pumping means for generating pressurized air for maintaining air pressure within the tire cavity at a preset pressure level. The air pumping means includes an upper mounting plate fixed to a vehicle rim, a lower mounting plate fixed to the rim and diametrically opposed to the upper mounting plate, a dynamic mass pivotally attached to the upper mounting plate at a first end of the dynamic mass, and a pump fixed to the lower mounting plate and pivotally attached to a second end of the dynamic mass.
An automatic carving device for a wheel, including a rack, a chassis, a lifting cylinder, brackets, bearing blocks, linear bearings, mounting plates, guide shafts, a lifting shaft, a servo motor, a synchronous pulley, a connection plate, a synchronous belt, a synchronous pulley, a pedestal, a connection shaft, a servo motor, a shaft sleeve, a lower end cover, a connection shaft, a shaft sleeve, and an oil cylinder. The automatic carving device for the wheel can automatically carve characters on the wheel, meanwhile it also has the characteristics of simple structure, convenience for manufacturing, stable performance and high precision that can meet the machining requirement, and can also meet the requirement of automatic production.
A process for the production of multipage information leaflets or slips, the information leaflet provided with a booklet structure including two or more pages, the process including in sequence the steps of: loading and feeding of a ream of sheets printed on one or both sides, taking of a single sheet from the ream and gluing along an edge portion of the single sheet, multiple folding of the single sheet on itself along the glued portion to define a folded sheet, cutting of the folded sheet to define the multipage information leaflet with the pages connected one to the other only at a joining area in proximity of an edge, pressing of the information leaflet at the joining area, accumulation and collection of the finished information leaflets and optional rejecting of the leaflets which do not comply with the production specifications.
The invention relates to a method for printing objects, in particular containers, wherein the containers are transported along a specified transport path, and the outer surface of the containers is printed at least temporarily by means of at least one printing unit, wherein a controller controls the printing of the containers by means of the at least one printing unit on the basis of at least one printing parameter. According to the invention, at least one object to be printed is printed with at least one test marking in order to ascertain the printing parameter, and the object provided with the test marking is then inspected by means of at least one inspection device, wherein the printing parameter is derived from the result of the inspection.
The present invention provides a printing system with an apparatus for defect detection comprising a sensing unit for sensing a surface geometry or topology of a sheet and for generating data representative of that surface geometry or topology, a processor device for processing the data to detect and classify deformations, and a controller for controlling further progress of the sheet along the transport path of the printing system in dependence upon the deformations detected and classified by the processor device. Furthermore, the invention provides a corresponding method of detecting defects in a printing system.
A digital inkjet flatbed printer having a separate laser processing machine includes a laser processing machine and a digital inkjet printer. The laser processing machine is provided with a laser output module and a laser processing platform. The digital inkjet printer includes an inkjet output module and an inkjet operating platform. The inkjet operating platform is capable of movably ascending from and descending onto the digital inkjet printer. Thus, when the inkjet operating platform is descended, the laser processing machine is movably connected to the inkjet operating platform, such that the laser output module of the laser processing machine and the inkjet output module of the digital inkjet printer are on the laser processing platform of the laser processing machine and sequentially used for laser processing and inkjet printing respectively.
A detection segment for use in a device for printing on containers includes an image-capturing device that optically detects a container feature and a sensor interface that interfaces with a sensor that uses a code provided on a retaining-and-centering unit that holds a container to determine a rotational position of that container. A computer connects to the image-capturing device and the sensor unit. The computer determines an alignment variable based on the code and the detected container feature and then forwards this alignment variable to a printer segment on a printer module.
A liquid ejecting apparatus includes a liquid inflow unit provided in the liquid supply path which supplies a liquid to a liquid ejecting unit and into which the liquid flows, a liquid accommodation unit having a diaphragm section, a communication path through which the liquid inflow part and the liquid accommodation part communicate, and a pressure-regulating mechanism having an on-off valve which opens and closes the communication path in response to displacement of the diaphragm portion, and a pressing mechanism which puts the on-off valve in an open state regardless of the pressure in the liquid inflow unit by pressing the diaphragm portion.
In a liquid discharge head, a third discharge port array group C1 which discharges a liquid of cyan, a second discharge port array group M1 which discharges a liquid of magenta, a fourth discharge port array group G which discharges a liquid of gray, a first discharge port array group Y which discharges a liquid of yellow, a second discharge port array group M2 which discharges a liquid of magenta, a third discharge port array group C2 which discharges a liquid of cyan are arranged in this order, in a direction. Each of discharge port arrays of the fourth discharge port array group G is formed of a plurality of discharge ports having a diameter smaller than that of a plurality of discharge ports which constitute first discharge port arrays of the second and third discharge port array groups C1, C2, M1 and M2.
A flow path member includes a plurality of flow paths including a first flow path, a filter chamber which communicates with the first flow path and is provided with a filter, and a second flow path which communicates with the filter chamber, in which the filter is disposed so that a direction including a direction where liquid of the first flow path or the second flow path flows is a surface direction, and in which a plurality of filter chambers are disposed at positions where at least the filter chambers partially overlap each other in a normal direction with respect to the surface direction of the filter.
Gas is ejected toward a region between a liquid ejection head and a recording medium so as to enlarge and stabilize a vortex generated by an airflow generated by liquid droplets ejected from ejection ports. Accordingly, an airflow turbulence generated between the liquid ejection head and the recording medium is reduced and displacements of positions at which the liquid droplets are applied due to the airflow turbulence are reduced.
A printing apparatus includes a liquid discharge device, a carriage, and a controller. The liquid discharge device includes a first nozzle row to discharge a first liquid to form an image and a second nozzle row to discharge a second liquid of a type different from the first liquid. The carriage is mounted with the liquid discharge device and reciprocally movable in a main scanning direction. The controller is configured to control the liquid discharge device to discharge the second liquid onto a region of a medium including another region onto which the first liquid is discharged. The controller includes a control unit to control the liquid discharge device to discharge the second liquid from the second nozzle row in both of forward movement and backward movement of the carriage and discharge the first liquid from the first nozzle row in one of the forward movement and the backward movement.
The present invention relates to an ink formulation comprising two-dimensional inorganic layered particles. The ink formulations of the present invention are for inkjet printing. The present invention also relates to a process for the preparation of these ink formulations, to the use of these ink formulations for the production of printed films and tracks comprising the inorganic material, to the films or tracks produced by the inkjet printing these ink formulations, and to devices that comprise these films or tracks.
A three-dimensional printing apparatus is disclosed has one or more troughs for receiving excess deposited particulate. Such troughs may be positioned to receive the excess deposited particulate into a particulate receiving chamber of the trough. An evacuation chamber is located at the bottom of each trough. A partition separates the evacuation chamber from the receiving chamber of the trough. The partition is selectively perforated to permit a desired amount of the particulate to flow into the evacuation chamber from the receiving chamber. The evacuation chamber is connected to a vacuum source to periodically or continuously draw ambient gas from a gas inlet to the evacuation chamber and/or from the receiving chamber through the perforations of the partition and then through the evacuation chamber toward the vacuum source to entrain an amount of the particulate and carry the entrained particulate out of the evacuation chamber.
Substrate comprising a discrete first layer comprising a first surface, an opposing second surface and a polymeric first material, wherein the first layer has a thickness of from about 1 micron to about 1000 microns and a hardness of from about 10 to about 80 on the Shore A scale; a discrete second layer comprising a first surface, an opposing second surface, and a second material, wherein the second layer has a hardness of from about 1 to about 70 on the Shore OOO scale and a thickness of from about 0.001 cm to about 2.0 cm; a discrete third layer comprising a first surface and a third material, wherein the third layer has a hardness of from about 0 to about 90 on the Shore D scale; and wherein the second surface of the first layer is in substantially fixed and continuous contact with the first surface of the second layer; the second surface of the second layer is in substantially fixed and continuous contact with the first surface of the third layer; and wherein the ratio of the average thickness of the second layer to the average thickness of the third layer is from about 4:96 to about 25:75.
An apparatus includes a first thermoset layer that includes a first fibrous material embedded in a first thermoset matrix. The apparatus also includes a second thermoset layer that includes a second fibrous material embedded in a second thermoset matrix. The second thermoset layer is coupled to the first thermoset layer to form a joint. Further, a gap is defined between the first thermoset layer and the second thermoset layer. The apparatus also includes a thermoplastic filler that is made from a thermoplastic material. The thermoplastic filler is positioned within the gap.
In a packaging body provided with at least an inner layer composed of a thermal-adhesive polyolefin based resin and a barrier layer composed of a metal foil, in which metal terminals are sealed by the thermal-adhesive resin with unconnected ends of the metal terminals protruding outside, an adhesive sheet for sealing metal terminals of a flat electrochemical cell which is not only able to prevent a short circuit between the barrier layer and the metal terminals but high in a layer-to-layer adhesive strength and a low possibility of a reduction in battery performance to be caused due to invasion of moisture is provided. In the adhesive sheet for sealing a metal terminal part of a flat electrochemical cell according to the invention, a fibrous sheet or a porous sheet is covered by the inner layer and an acid-modified polyolefin based resin layer having adhesive properties.
A method including forming a bilayer polymer film having an oriented polypropylene film and a metallocene-catalyzed polypropylene film wherein the metallocene-catalyzed polypropylene film has a seal initiation temperature of from 80° C. to 130° C. A laminate including a biaxially oriented polypropylene film, a metallocene-catalyzed polypropylene film, and a substrate, wherein the metallocene-catalyzed polypropylene film is disposed between the biaxially oriented polypropylene film and the substrate.
A glass laminate structure comprising an external glass sheet and an internal glass sheet wherein one or both of the glass sheets comprises SiO2+B2O3+Al2O3≥86.5 mol. %. and R2O—RO—Al2O3
A tape having a fully wound stable state and a fully unwound stable state, configured for space applications, the intermediate states between the fully wound state and the fully unwound state comprises a single continuous portion of wound tape with a first radius of curvature greater than a threshold value and a single continuous portion of unwound tape with a second radius of curvature less than the threshold value, the value of the second radius of curvature being continuous over the unwound portio; the tape comprises a stack comprising fibrous layers extending in a longitudinal direction, the resulting stack having symmetry with respect to a longitudinal plane of its fibres to compensate for torsional deformations generated by variations in temperature.
Disclosed is a method for controlling a laser beam for manufacturing three-dimensional objects by stacked layers, including, for each layer, a step for using a laser beam to solidify a zone corresponding to a two-dimensional object to be manufactured, such a two-dimensional section having a geometric contour. The method includes, for at least one the two-dimensional section, a step of acquiring (50) the geometric contour of the two-dimensional section, a step of determining (52) a reference path from the geometric contour of the section, the reference path having a shape correlated to the shape of the geometric contour, a step of determining (54) a set of paths based on the reference path, and a step of controlling (58) the laser beam to travel all of the determined paths using a travel strategy defining a travel order of the paths and a starting point for each path.
The present disclosure describes three-dimensional (3D) printing apparatuses, processes, software, and systems for producing high quality 3D objects. Described herein are printing apparatuses that facilitate control of energy beam characteristics using an optical mask during one or more printing operations.
A three dimensional printing apparatus and a printing head module are provided. The three dimensional printing apparatus includes a base, a printing head module and a controller. The base has a carrying surface. The printing head module includes a printing head, a fan and a nozzle guiding cover. The printing head includes a heating element, a feeding channel and a nozzle. The feeding channel connects the nozzle. The nozzle guiding cover is disposed correspondingly to the fan and extended to the nozzle. The nozzle guiding cover includes a nozzle outlet located between the nozzle and the carrying surface. The controller is coupled to the printing head module to control a hot-melt material transmitting to the nozzle, and the heating element is configured to heat the nozzle so the hot-melt material is melted and dispensed on the carrying surface to form a three dimensional object.
The invention relates to a monitoring method for monitoring the energy requirement of an extrusion installation (10), comprising the following steps: Setting of a balancing limit (20), in whose balancing space (22) the extrusion installation (10) is assembled, Monitoring of at least one energy flow (30) into the balancing space (22), Monitoring of a feed flow (40) of granules in the extrusion installation (10), Determining the relation between the at least one energy flow (30) and the feed flow (40).
This sheet manufacturing apparatus is provided with: a nozzle for extruding a heated resin sheet; a main roll with a surface on which microstructures are formed; a follower roll disposed at a distance from the main roll; and an electricity-supplying mechanism. The electricity-supplying mechanism heats an electrically conductive section of the main roll by supplying electricity to the electrically conductive section from both edges of the main roll.
An aspect of the invention is directed to a method for producing a connector using injection-molding by providing at least one conductor and at least one contact pin which are electrically connected at a contact point, producing a thermoset premold from a thermoset using injection-molding, wherein the thermoset is injection-molded around at least a first section of the at least one conductor and/or around at least a second section of the at least one contact pin, and injection-molding of a thermoplast on the thermoset premold, wherein the step of injection-molding takes place before the thermoset premold has obtained a degree of curing of 90%. Another aspect of the invention is a connector comprising at least one conductor and at least one contact pin is disclosed.
The following invention is used to recycle broken pieces of crayons, A crayon package comprises a portion of the box which can be placed in an oven, said portion of the box being detachable from the package, said portion of the box is designed as a crayon recycling cartridge, the crayon recycling cartridge comprises slots, the edges of the slots are provided with guide slopes, the bottom of the guide slope is connected to the edge of the slot and the slot is expanded outward, which increases the volume of the slot. The used crayons will be placed into the slots, melted and re-casted into new crayons. And if too much used crayons are placed above the edge of the slots, when the crayon melts, the guide slope will catch the melted crayons, sending it back down into the slots, fitting to the volume of the slots.